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Problem 1: Number of Convex Sets (3 + 3 + 3 Points)

For d ≥ 1 we introduce the following equivalence relation for convex subsets A,B
of Rd:

A ∼ B :⇐⇒ there exists an x ∈ Rd and an α > 0 such that B = x+ αA.

Here x+ αA denotes the set {x+ αy : y ∈ A}.

(a) How many distinct equivalence classes are there in the case d = 1? Describe
the classes.

(b) In the case where d = 1, how many distinct equivalence classes are there, if
the only restriction on α is α 6= 0 ? Again, give a description of the classes.

(c) What is the cardinality of the set of equivalence classes for d = 2 ?

Problem 2: Carathéodory’s Theorem (6 Points)

Prove the following statement known as Carathéodory’s Theorem:

Let S ⊆ Rd be a set and x ∈ conv(S) be a point in the convex hull of S. Then there
exists a set R ⊆ S of cardinality at most d+ 1 such that x ∈ conv(R).

Hint: First show that every point x ∈ conv(S) can be written as a finite convex

combination x =
n∑

i=1

λixi for some n ∈ N, where λi ≥ 0,
n∑

i=1

λi = 1 and xi ∈ S. Then

argue similarly as in the proof of Radon’s Theorem1.

1Radon’s Theorem was incorrectly called Carathéodory’s Lemma in the lecture.
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Problem 3: Cone Generated by a Set (2 + 2 + 1 Points)

For any pair of distinct points a, b ∈ Rd let [a, b[ denote the closed halfline with
endpoint a that passes through b. In other words

[a, b[ :=
{
x ∈ Rd : x = a+ α(b− a) for some α ≥ 0

}
.

For any set K ⊆ Rd and any element a ∈ Rd we define the cone generated by K
with apex a as follows:

conea(K) :=
⋃

b∈K, b6=a

[a, b[ .

Let K ⊆ Rd be a convex set.

(a) Show that the set conea(K) is convex.

(b) Show that if K is open, then the set conea(K) \ {a} is open.

(c) Is statement (a) true for an arbitrary set K ⊆ Rd ?
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