Prof. Günter M. Ziegler
Albert Haase, Marie Litz

Discrete Geometry 1

Solutions for the first exercise of Sheet 11

Problem 1: The Number of Faces: Extremal Properties
Fix d and let $M_{i}(n)$ be the maximal and $m_{i}(n)$ be the minimal number of i-faces for a simplicial d-polytope with n vertices.
(a) (i) Show that $M_{i}(n)$ and $m_{i}(n)$ are polynomials in n.

The upper and lower bound theorem gives us that the f-vector of a simplicial d-polytope on n vertices is bounded by the stacked d-polytope on n vertices and the cyclic d-polytope on n vertices which are themselves simplicial. Thus

$$
\begin{aligned}
& m_{i}(n)=f_{i}\left(\operatorname{Stack}_{d}(n)=\right) \begin{cases}\binom{d+1}{i+1}+(n-d-1)\binom{d}{i} & \text { for } i<d-1 \\
(d+1)+(n-d-1)(d-1) & \text { for } i=d-1\end{cases} \\
& M_{i}(n)=f_{i}\left(C_{d}(n)\right)=\frac{n-\delta(n-i-2)}{n-i-1} \sum_{j=0}^{\left\lfloor\frac{d}{2}\right\rfloor}\binom{n-1-j}{i+1-j}\binom{n-(i+1)}{2 j-(i+1)+\delta}
\end{aligned}
$$

Those functions are obviously polynomials in n.
(ii) Compute the degrees of $M_{i}(n)$ and $m_{i}(n)$.

$$
\operatorname{deg} m_{i}(n)=1
$$

In order to compute deg $M_{i}(n)$, note that $\binom{m}{k}:=0$ if $k<0$ or $k>m$. Using and $\left\lfloor\frac{d}{2}\right\rfloor \geq j$ and $n \geq d+1$ we deduce $n-(i+1) \geq 2 j-(i+1)+\delta$ and with $n \geq d+1$ and $d \geq i+1$, we get $n-1-j \geq i+1-j$, i.e. $m \geq k$ is satisfied. If we want k to be non-negative we need to choose
$j \leq i+1$ and $j \geq \frac{i+1-\delta}{2}$. In that case the degree of each summand is $i+1-j+2 j-(i+1)+\delta=j+\delta$ which maximizes for $j \in \min \left(i+1,\left\lfloor\frac{d}{2}\right\rfloor\right)$. Also considering the contribution of the factor $\frac{n-\delta(n-i-2)}{n-i-1}$, we get

$$
\operatorname{deg} M_{i}(n)=-\delta+\min \left(i+1,\left\lfloor\frac{d}{2}\right\rfloor\right)+\delta=\min \left(i+1,\left\lfloor\frac{d}{2}\right\rfloor\right) .
$$

(iii) Compute the leading coefficients of $M_{i}(n)$ and $m_{i}(n)$.

The leading coefficients for $m_{i}(n)$ are $\binom{d}{i}$ for $i<d-1$ and $d-1$ for $i=d-1$.
For $M_{i}(n)$ the sum contributes with $\frac{1}{(i+1-k)!(2 k-(i+1)+\delta)!}$ for $k=\min (i+$ $\left.1,\left\lfloor\frac{d}{2}\right\rfloor\right)$ whereas $\frac{n-\delta(n-i-2)}{n-i-1}$ contributes with $(i+2)^{\delta}$. Therefore the leading coefficient is

$$
\frac{(i+2)^{\delta}}{(i+1-k)!(2 k-(i+1)+\delta)!}
$$

For $k=i+1$ (i.e. $i=0, \ldots,\left\lfloor\frac{d}{2}\right\rfloor-1$) this yields

$$
\frac{(i+2)^{\delta}}{(i+1-(i+1))!(2(i+1)-(i+1)))!(2(i+1)-i)^{\delta}}=\frac{1}{(i+1)!}
$$

For $k=\left\lfloor\frac{d}{2}\right\rfloor$ (i.e. $i \geq\left\lfloor\frac{d}{2}\right\rfloor$) we obtain

$$
\begin{aligned}
\frac{(i+2)^{\delta}}{\left(i+1-\left\lfloor\frac{d}{2}\right\rfloor\right)!\left(2\left\lfloor\frac{d}{2}\right\rfloor-(i+1)+\delta\right)!} & =\frac{(i+2)^{\delta}}{\left(i+1-\left\lfloor\frac{d}{2}\right\rfloor\right)!(d-(i+1))!} \\
& =\frac{(i+2)^{\delta}}{\left\lfloor\frac{d}{2}\right\rfloor!}\binom{\left\lfloor\frac{d}{2}\right\rfloor}{ d-(i+1)}
\end{aligned}
$$

Another approach to analyze the f-vector of the cyclic polytope would be to use the fact that $C_{d}(n)$ is neighborly. This means we know roughly half of the entries of the face vector already.

$$
f_{i}\left(C_{d}(n)\right)=\binom{n}{i+1} \text { for } i<\left\lfloor\frac{d}{2}\right\rfloor .
$$

Then use Dehn-Sommerville and the formulae to compute the h-vector from the f-vector and vice versa and argue why the functions are polynomials, deduce the degree and the leading coefficients

$$
\begin{cases}\binom{\frac{d}{2}}{i+1-\frac{d}{2}} \frac{1}{d!} & \text { for even } d \\ \left(\binom{\left\lceil\frac{d}{2}\right\rceil}{ i+1-\left\lfloor\frac{d}{2}\right\rfloor}+\binom{\left\lfloor\frac{d}{2}\right\rfloor}{ i+1-\left\lceil\frac{d}{2}\right\rceil}\right) \frac{1}{\left\lfloor\frac{d}{2}\right\rfloor!} & \text { for odd } d\end{cases}
$$

Simple calculations show that the two formulae for the leading coefficient of $M_{i}(n)$ are actually identical.
(b) Bonus: What can be said if the polytope is not required to be simplicial?

Sketch: In that case $M_{i}(n)$ is still given by the cyclic polytope but the lower bound theorem doesn't apply anymore. For fixed d the polar of $C_{d}(n)$ gives an infinite family of counterexamples.

