Prof. Günter M. Ziegler
Albert Haase, Marie Litz

Discrete Geometry 1 - Problem Sheet 12

Please hand in your solutions to Prof. Ziegler on Wednesday, Jan. 29, 2014 before the lecture begins.

Problem 1: Points in Convex Position

Recall that a set $X \subset \mathbb{R}^{d}$ is in convex position if for every $x \in X$ we have $x \notin$ $\operatorname{conv}(X \backslash\{x\})$.
(a) Find a configuration of 8 points in general position in the plane such that no 5 of its points are in convex position. Hence you are showing that the "ErdősSzekeres number" $n(5)>8$.
(b) Prove that for each $k \geq 1$ there exists a number $m(k)$ such that any $m(k)$ points in the plane contain k points in convex position or k points on a line.

Problem 2: Dual Configurations

(a) Translate the Sylvester-Gallai Theorem into the dual setting of line arrangements. (In your statement, be careful about parallel lines etc.)
(b) Translate the Erdős-Szekeres Theorem into the dual setting of line arrangements. What is the dual statement to existence of k-caps or k-cups in every sufficiently large point configuration in general position?

Problem 3: Hyperplane Arrangements
(a) Consider the arrangement \mathcal{H} of hyperplanes given by the equations $x_{i}=x_{j}$ for $1 \leq i<j \leq d$. Draw a picture of \mathcal{H} in dimension 3 . How many d-dimensional cells does \mathcal{H} have?
(b) Bonus: Consider the arrangement \mathcal{H}^{\prime} of hyperplanes given by the equations $x_{i}= \pm x_{j}$ for $1 \leq i<j \leq d$. Draw a picture of \mathcal{H}^{\prime} in dimensions 2 and 3 . How many d-dimensional cells does \mathcal{H}^{\prime} have?

