Prof. Günter M. Ziegler

Albert Haase, Marie Litz

Discrete Geometry 1 - Problem Sheet 6

Please hand in your solutions to Prof. Ziegler on Wednesday, Nov. 27, 2013 before the lecture begins. Please put your name and student ID (if you have one) on the first page of your solutions and staple the sheets together.

Problem 1: Unimodality of an f-Vector

Let C_{d} be the d-dimensional cube, for instance $C_{d}=[0,1]^{d}$. For which $k=k(d)$ does C_{d} have the largest number of k-faces? To answer this, analyze the quotients f_{k} / f_{k-1}, and show that they decrease with k. Conclude that the f-vector of C_{d} is unimodal, that is,

$$
f_{0}<f_{1}<\cdots<f_{k(d)} \geq f_{k(d)+1}>\cdots>f_{d-1}
$$

Problem 2: The Half-Cube
Let

$$
H_{d}:=\operatorname{conv}\left\{x \in\{0,1\}^{d}: x_{1}+\cdots+x_{d} \in 2 \mathbb{Z}\right\}
$$

be the d-th half-cube.
(a) Describe the facets of H_{d} : How many are there and what are their combinatorial types? (The cases $d=1,2,3$ need to be described separately.)
(b) Give an \mathcal{H}-representation of H_{d}. (The cases $d=1,2,3$ need to be argued separately.)
(c) Show that H_{d} is 3-simplicial, that is, all of its 3-faces are tetrahedra.
(d) Show that H_{d} is simplicial for $d \leq 4$, but not for $d>4$.

Problem 3: The f-Polynomial
Define the f-polynomial of a d-polytope P with f-vector $f(P)=\left(1, f_{0}, \ldots, f_{d-1}, 1\right)$ as

$$
f_{P}(t):=1+f_{0} t+f_{1} t^{2}+\cdots+f_{d-1} t^{d}+t^{d+1} .
$$

(a) Describe the f-polynomial $f_{P \times I}$ of the prism $P \times I$ in terms of the f-polynomial of P. Deduce from this a formula for the f-polynomial of the d-cube.
(b) Describe the f-polynomial of P^{*} in terms of the f-polynomial of P. Deduce from this a formula for the f-polynomial of the d-crosspolytope.
(c) Describe the f-polynomial of $P \times Q$ in terms of the f-polynomials of P and of Q.

