Prof. Günter M. Ziegler
Albert Haase, Marie Litz

Discrete Geometry 1 - Problem Sheet 8

Please hand in your solutions to Prof. Ziegler on Wednesday, Dec. 11, 2013 before the lecture begins.

Problem 1: k-Neighborliness

Let P be a k-neighborly polytope of dimension $d \geq 1$. Show that every $(2 k-1)$-face of P is a simplex. Conclude that if P is $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$-neighborly, then P is a simplex.

Problem 2: Cyclic Polytopes

$$
(4(+2)+4 \text { Points })
$$

Consider the cyclic polytope

$$
C_{d}\left(t_{1}, \ldots, t_{n}\right):=\operatorname{conv}\left\{\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right\} \subset \mathbb{R}^{d}
$$

where $t_{1}<\cdots<t_{n}$ for $n>d>1$ and γ denotes the moment curve in \mathbb{R}^{d}. In this problem we are referring to combinatorial types rather than geometric realizations.
(a) Let d be even. Let $\pi=(12 \ldots n)$ be the cyclic permutation that sends $i \longmapsto$ $i+1$ for $1 \leq i \leq n-1$ and $n \longmapsto 1$. Show that whenever $I \subset\{1, \ldots, n\}$ is the index set (of the vertices) of a face of $C_{d}\left(t_{1}, \ldots, t_{n}\right)$ the set $\pi(I)$ is an index set of a face of $C_{d}\left(t_{1}, \ldots, t_{n}\right)$. Prove the same result for the permutation π^{\prime} that sends $i \longmapsto n+1-i$, in other words, for

$$
\pi^{\prime}=\prod_{\substack{i<j \\ i+j=n+1}}(i, j)
$$

(b) Bonus: Do the statements in (a) hold for odd d ?
(c) Show that $C_{d}(d+1)$ is a d-simplex Δ_{d} and that $C_{d}(d+2)$ is the direct sum of simplices $\Delta_{\lceil d / 2\rceil} \oplus \Delta_{\lfloor d / 2\rfloor}$.

Problem 3: Examples

(a) Give an example of a (geometric) polytope P of dimension 4 with 1000 facets such that every two facets share a 2 -face. By "share a 2 -face" we mean that P has a 2 -face incident to both facets.
(b) Give an example of a simplicial polytope of dimension 5 with 7 vertices whose combinatorial type is not that of a cyclic polytope $C_{5}(7)$.

