

Prof. Günter M. Ziegler Albert Haase, Marie Litz Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Discrete Geometry 1 – Problem Sheet 8

Please hand in your solutions to Prof. Ziegler on Wednesday, Dec. 11, 2013 before the lecture begins.

Problem 1: k-Neighborliness

(6 Points)

Let P be a k-neighborly polytope of dimension $d \ge 1$. Show that every (2k-1)-face of P is a simplex. Conclude that if P is $(\lfloor \frac{d}{2} \rfloor + 1)$ -neighborly, then P is a simplex.

Problem 2: Cyclic Polytopes

(4(+2)+4 Points)

Consider the cyclic polytope

$$C_d(t_1,\ldots,t_n) := \operatorname{conv}\left\{\gamma(t_1),\ldots,\gamma(t_n)\right\} \subset \mathbb{R}^d$$

where $t_1 < \cdots < t_n$ for n > d > 1 and γ denotes the moment curve in \mathbb{R}^d . In this problem we are referring to combinatorial types rather than geometric realizations.

(a) Let d be even. Let $\pi = (1 \ 2 \dots n)$ be the cyclic permutation that sends $i \mapsto i+1$ for $1 \le i \le n-1$ and $n \mapsto 1$. Show that whenever $I \subset \{1,\dots,n\}$ is the index set (of the vertices) of a face of $C_d(t_1,\dots,t_n)$ the set $\pi(I)$ is an index set of a face of $C_d(t_1,\dots,t_n)$. Prove the same result for the permutation π' that sends $i \mapsto n+1-i$, in other words, for

$$\pi' = \prod_{\substack{i < j \\ i+j=n+1}} (i,j).$$

- (b) Bonus: Do the statements in (a) hold for odd d?
- (c) Show that $C_d(d+1)$ is a d-simplex Δ_d and that $C_d(d+2)$ is the direct sum of simplices $\Delta_{\lceil d/2 \rceil} \oplus \Delta_{\lceil d/2 \rceil}$.

Problem 3: Examples

(3+3 Points)

- (a) Give an example of a (geometric) polytope P of dimension 4 with 1000 facets such that every two facets share a 2-face. By "share a 2-face" we mean that P has a 2-face incident to both facets.
- (b) Give an example of a simplicial polytope of dimension 5 with 7 vertices whose combinatorial type is not that of a cyclic polytope $C_5(7)$.