Prof. Günter M. Ziegler

Albert Haase, Marie Litz

Discrete Geometry 1 - Problem Sheet 9

Please hand in your solutions to Prof. Ziegler on Wednesday, Dec. 18, 2013 before the lecture begins.

Problem 1: The "cube slice polytopes"
For $1 \leq k \leq d$ let

$$
\begin{aligned}
\Delta_{d-1}(k) & :=\left\{x \in[0,1]^{d}: x_{1}+\cdots+x_{d}=k\right\} \\
& =\operatorname{conv}\left\{x \in\{0,1\}^{d}: x_{1}+\cdots+x_{d}=k\right\}
\end{aligned}
$$

(i) Show that $\Delta_{d-1}(k)$ is affinely equivalent to

$$
\begin{aligned}
\Delta_{d-1}^{\prime}(k) & :=\left\{x \in[0,1]^{d-1}: k-1 \leq x_{1}+\cdots+x_{d-1} \leq k\right\} \\
& =\operatorname{conv}\left\{x \in\{0,1\}^{d-1}: k-1 \leq x_{1}+\cdots+x_{d-1} \leq k\right\}
\end{aligned}
$$

(2 Points)
(ii) Describe $\Delta_{3}(2)$. (1 Point)
(iii) Study how the hyperplane $H_{k}=\left\{x \in \mathbb{R}^{d}: x_{1}+\cdots+x_{d}=k\right\}$ cuts the faces of the d-cube $[0,1]^{d}$. What do the resulting faces look like? Conversely, describe how the faces of $\Delta_{d-1}(k)$ arise from faces of $[0,1]^{d}$. (Hint: Distinguish vertices from higher dimensional faces!) (2 Points)
(iv) Let $k \in\{1, \ldots, d-1\}$. Show that the \mathcal{H}-description and the \mathcal{V}-description in the definition of $\Delta_{d-1}(k)$ give the same ($d-1$)-polytope. (2 Points)
(v) Show that $\Delta_{d-1}(k)$ and $\Delta_{d-1}(d-k)$ are combinatorially equivalent. (1 Point)
(vi) Show that for even $d, \Delta_{d-1}\left(\frac{d}{2}\right)$ is centrally symmetric, i.e. there is a center point c such that for all $x \in \mathbb{R}^{d}, c+x \in \Delta_{d-1}\left(\frac{d}{2}\right)$ if and only if $c-x \in \Delta_{d-1}\left(\frac{d}{2}\right)$. (1 Point)
(vii) Show that $\Delta_{d-1}(1)$ and $\Delta_{d-1}(d-1)$ are simplices. (1 Point)
(viii) Show that for $1<k<d-1, \Delta_{d-1}(k)$ has $2 d$ facets. What are their combinatorial types? There are two different combinatorial types, except in the case

$$
k=\frac{d}{2} \cdot(2 \text { Points })
$$

(ix) A polyope is k-simple if its dual is k-simplicial. Show that $\Delta_{d-1}(k)$ is 2 simplicial and ($d-2$)-simple. (2 Points)
(x) Describe $\Delta_{4}(2)$: compute the f-vector, describe the facets. (1 Point)
(xi) Bonus: Show that the f-vector of $\Delta_{d-1}(k)$ is given by

$$
\begin{aligned}
f_{i-1}\left(\Delta_{d-1}(k)\right) & =|\{[d]=A \uplus B \uplus C:|A|<k,|B|<d-k,|C|=i\}| \\
& =\sum_{\substack{0 \leq s<k \\
k<s+i \leq d}}\binom{d}{s}\binom{d-s}{i} \\
& =\sum_{\max \{-1, k-i\}<s<\min \{k, d-i+1\}} \frac{d!}{s!!!(d-s-i)!}
\end{aligned}
$$

for $i>1$. How about f_{0} ?
(Hint: Every i-face of $[0,1]^{d}$ can be described in the form

$$
\left\{x \in \mathbb{R}^{d}: x_{j}=1 \text { for } j \in A, x_{j}=0 \text { for } j \in B, 0 \leq x_{j} \leq 1 \text { for } j \in C\right\},
$$

for suitable sets A, B, C satisfying $A \uplus B \uplus C=[d]$ and $|C|=i$.) ((4) Points)
(xii) Compute and plot the f-vector of $\Delta_{41}(21)$. You may use (xi). (2 Points)

