Prof. Günter M. Ziegler

Albert Haase, Marie Litz

Discrete Geometry 1 - Xmas Problem Sheet

These are bonus problems for the Xmas break - have fun with them.
If you want them graded or would like credit, please hand in your solutions to Dr. Izmestiev on Wednesday, Jan. 8, 2014 before the lecture begins. (We'll count the bonus points for the first or second half of the semester, as you like. Please specify.)

Problem 1: Triangles or simple vertices

Show that every 3 -dimensional polytope has at least 4 triangle faces or at least 4 simple vertices (i.e., vertices of degree 3) or both. Show that 3 -polytopes with only 4 triangle faces and exactly 4 simple vertices but an arbitrarily large number of edges exist.

Problem 2: f-vectors of 3 -polytopes

$$
((6)+(6) \text { Points })
$$

(i) Show that the f-vectors of 3 -polytopes are given by the set

$$
\left\{\left(f_{0}, f_{1}, f_{2}\right) \in \mathbb{Z}^{3}: f_{0}-f_{1}+f_{2}=2, \quad f_{2} \leq 2 f_{0}-4, \quad f_{0} \leq 2 f_{2}-4\right\}
$$

(ii) Show that the f-vectors of centrally-symmetric 3 -polytopes are given by

$$
\left\{\left(f_{0}, f_{1}, f_{2}\right) \in(2 \mathbb{Z})^{3}: f_{0}-f_{1}+f_{2}=2, \quad f_{2} \leq 2 f_{0}-4, \quad f_{0} \leq 2 f_{2}-4, \quad f_{0}+f_{2} \geq 14\right\}
$$

Problem 3: The "fractional cube slice polytopes"
For an odd integer $\ell, 1 \leq \ell \leq 2 d-1$ let

$$
\Delta_{d-1}\left(\frac{\ell}{2}\right):=\left\{x \in[0,1]^{d}: x_{1}+\cdots+x_{d}=\frac{\ell}{2}\right\} .
$$

(i) Show that $\Delta_{d-1}(k)$ is affinely equivalent to
((2) Points)

$$
\Delta_{d-1}^{\prime}\left(\frac{\ell}{2}\right):=\left\{x \in[0,1]^{d-1}: \frac{\ell}{2}-1 \leq x_{1}+\cdots+x_{d-1} \leq \frac{\ell}{2}\right\}
$$

(ii) Describe $\Delta_{2}\left(\frac{3}{2}\right)$.
((1) Point)
(iii) Describe $\Delta_{3}\left(\frac{3}{2}\right)$. (It is a semi-regular polytope: Its faces are regular polygons, and at each vertex it has the same number and types of faces.) ((1) Point)
(iv) Study how the hyperplane $H_{\ell / 2}=\left\{x \in \mathbb{R}^{d}: x_{1}+\cdots+x_{d}=\frac{\ell}{2}\right\}$ cuts the faces of the d-cube $[0,1]^{d}$. What do the resulting faces look like? Conversely, describe how the faces of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ arise from faces of $[0,1]^{d}$.
((2) Points)
(v) Give a \mathcal{V}-description of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$.
((1) Point)
(vi) Show that $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ and $\Delta_{d-1}\left(d-\frac{\ell}{2}\right)$ are congruent. Derive that for odd d, $\Delta_{d-1}\left(\frac{d}{2}\right)$ is centrally symmetric.
((1) Point)
(vii) For $\Delta_{d-1}\left(\frac{1}{2}\right)$ and $\Delta_{d-1}\left(\frac{2 d-1}{2}\right)$ are simplices. Show that for $3 \leq \ell \leq 2 d-3$, $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ has $2 d$ facets. What are their combinatorial types? There are two different combinatorial types, except in the case $\ell=d$, for odd d. ((2) Points)
(viii) State and prove a formula for the f-vector of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$.
((4) Points)
(ix) Compute and plot the f-vectors of $\Delta_{42}\left(\frac{13}{2}\right), \Delta_{42}\left(\frac{23}{2}\right), \Delta_{42}\left(\frac{33}{2}\right)$, and $\Delta_{42}\left(\frac{43}{2}\right)$.
((2) Points)

