Prof. Günter M. Ziegler
Albert Haase, Marie Litz

Discrete Geometry 1

Solutions for the remaining exercise of the Xmas Sheet

Problem 3: The "fractional cube slice polytopes"

For an odd integer $\ell, 1 \leq \ell \leq 2 d-1$ let

$$
\Delta_{d-1}\left(\frac{\ell}{2}\right):=\left\{x \in[0,1]^{d}: x_{1}+\cdots+x_{d}=\frac{\ell}{2}\right\} .
$$

(iv) Study how the hyperplane $H_{\ell / 2}=\left\{x \in \mathbb{R}^{d}: x_{1}+\cdots+x_{d}=\frac{\ell}{2}\right\}$ cuts the faces of the d-cube $[0,1]^{d}$. What do the resulting faces look like? Conversely, describe how the faces of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ arise from faces of $[0,1]^{d}$.
((2) Points)
The reasoning goes as in the previous problem sheet. Every k-face of the d-cube is described by the set of coordinate entries which are fixed to 1 , which we call A, the set of coordinate entries which are fixed to 0 , which we call B, and the set of entries that varies between 0 and 1 , called C, and $|C|=k$. Denote $|A|$ with a. Then the resulting face of the fractional hypersimplex is combinatorially equivalent to $\Delta_{k-1}\left(\frac{\ell}{2}-a\right)$.
Vice versa every $(k-1)$-face of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ gives rise to a k-dimensional face of the cube. This face is defined by the fixed 0 and 1 entries of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$.
(v) Give a \mathcal{V}-description of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$.
((1) Point)
The vertices of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ are the midpoints certain edges, namely the edges which connect one vertex of the cube whose entries sum to $\frac{\ell-1}{2}$ and one whose entries sum to $\frac{\ell+1}{2}$.

$$
\operatorname{vert}\left(\Delta_{d-1}\left(\frac{\ell}{2}\right)\right)=\left\{x \in \mathbb{R}^{d}: x \text { has } \frac{\ell-1}{2} \text { ones, one } \frac{1}{2} \text { and zeros otherwise }\right\}
$$

(vi) Show that $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ and $\Delta_{d-1}\left(d-\frac{\ell}{2}\right)$ are congruent. Derive that for odd d, $\Delta_{d-1}\left(\frac{d}{2}\right)$ is centrally symmetric.
((1) Point)

Just as in the last exercise sheet, the map $x \longmapsto \mathbb{1}-x$ maps $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ to $\Delta_{d-1}\left(d-\frac{\ell}{2}\right)$. The map is a reflection through the centroid $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$. Therefore the polytopes are congruent. We have $d-\frac{d}{2}=\frac{d}{2}$, so for odd d we can build the fractional hypersimplex $\Delta_{d-1}\left(\frac{d}{2}\right)=\Delta_{d-1}\left(d-\frac{d}{2}\right)=-\Delta_{d-1}\left(\frac{d}{2}\right)$.
(vii) For $\Delta_{d-1}\left(\frac{1}{2}\right)$ and $\Delta_{d-1}\left(\frac{2 d-1}{2}\right)$ are simplices. Show that for $3 \leq \ell \leq 2 d-3$, $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ has $2 d$ facets. What are their combinatorial types? There are two different combinatorial types, except in the case $\ell=d$, for odd d. ((2) Points) The cube is simple, so $\Delta_{d-1}\left(\frac{1}{2}\right)$ and $\Delta_{d-1}\left(\frac{2 d-1}{2}\right)$ must be simplices. For all other possible polytopes $\Delta_{d-1}\left(\frac{\ell}{2}\right)$, we look at the facets of the cube. Each facet is characterized by a coordinate i which is fixed to 1 or 0 . For all $3 \leq \ell \leq 2 d-3$, there exist $x_{j} \in(0,1), j \in[d] \backslash\{i\}$, with one value x_{i} set to 1 or 0 that satisfy $x_{1}+\cdots+x_{d}=\frac{\ell}{2}$, so every facet as an interior point that lies in $\Delta_{d-1}\left(\frac{\ell}{2}\right)$. Thus every facet of the cube yields at least one face of the hypersimplex. It cannot be more than one because we intersected with a hyperplane and $\Delta_{d-1}\left(\frac{\ell}{2}\right)$ does not contain a whole face of the cube.
(viii) State and prove a formula for the f-vector of $\Delta_{d-1}\left(\frac{\ell}{2}\right)$.
((4) Points)
Again, following the line of reasoning from the previous exercise sheet, we obtain for all $1 \leq i \leq d$

$$
\begin{aligned}
f_{i-1}\left(\Delta_{d-1}\left(\frac{\ell}{2}\right)\right)= & \left|\left\{[d]=A \uplus B \uplus C:|A|<\frac{\ell}{2},|B|<d-\frac{\ell}{2},|C|=i\right\}\right| \\
= & \sum_{\substack{0 \leq s \leq \frac{\ell-1}{2}}}\binom{d}{s}\binom{d-s}{i} \\
& =\sum_{\operatorname{l+1} 2 \leq s+i \leq d} \\
& \sum_{\max \left\{0, \frac{\ell+1}{2}-i\right\} \leq s \leq \min \left\{\frac{\ell-1}{2}, d-i\right\}} \frac{d!}{s!!!(d-s-i)!} .
\end{aligned}
$$

(ix) Compute and plot the f-vectors of $\Delta_{42}\left(\frac{13}{2}\right), \Delta_{42}\left(\frac{23}{2}\right), \Delta_{42}\left(\frac{33}{2}\right)$, and $\Delta_{42}\left(\frac{43}{2}\right)$.
((2) Points)
The f-vectors were computed in sage (which is accessible on all math/computer science computers at the FU and can be downloaded (http://www. sagemath. org/) and used online (http://www. sagenb. org/ or https://cloud.sagemath. com/).
The necessary syntax:
. range (k, l) gives $[k, k+1, \ldots, l-1]$ and range (1) gives $[0, \ldots, l-1]$,
. sum $f(x)$ for x in range (k, l) gives the sum
. For given n [binomial (n, m) for m in range ($\mathrm{k}, \mathrm{l})]$ computes $\left[\binom{n}{k}, \ldots,\binom{n}{l-1}\right]$
. $\operatorname{zip}(\mathrm{a}, \mathrm{b})$ creates a list of tuples $\left(a_{i}, b_{i}\right)$ from lists a,b
. list_plot(c) plots a list c of tuples

Now, for the first polytope, we obtain

```
sage: d=43
sage: l=13
sage: f=[sum(binomial(d,s)*binomial(d-s,i) for s in range (max(0,
    (l+1)/2-i),1+min((l-1)/2,d-i))) for i in range (1,d)]
```

[225568798,
4736944758,

3612,
86]
sage: list_plot(zip(range(1,d),f))

Figure 1: f-vector of $\Delta_{42}\left(\frac{13}{2}\right)$

Figure 2: f-vector of $\Delta_{42}\left(\frac{23}{2}\right)$

Figure 3: f-vector of $\Delta_{42}\left(\frac{33}{2}\right)$

Figure 4: f-vector of $\Delta_{42}\left(\frac{43}{2}\right)$

Apparently, for increasing ℓ the maximum of the curve shifts to the left.

