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This is the first in a series of three courses on Discrete Geometry. We will get to know fascinating geo-
metric structures such as configurations of points and lines, hyperplane arrangements, and in particular
polytopes and polyhedra, and learn how to handle them using modern methods for computation and vi-
sualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at
first sight (and some of it is), but it also very quickly touches topics of current research.

For students with an interest in discrete mathematics and geometry, this is the starting point to specialize
in discrete geometry. The topics addressed in the course supplement and deepen the understanding of
discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology,
and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some
knowledge of combinatorics and geometry is helpful.
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0 Introduction

What’s the goal?

This is a first course in a large and interesting mathematical domain commonly known as “Dis-
crete Geometry”. This spans from very classical topics (such as regular polyhedra – see Euclid’s
Elements) to very current research topics (Discrete Geometry, Extremal Geometry, Computa-
tional Geometry, Convex Geometry) that are also of great industrial importance (for Computer
Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in
such a way that

• you get an overview of the field of Discrete Geometry and its manifold connections,

• you learn to understand, analyze, visualize, and confidently/competently argue about the
basic structures of Discrete Geometry, which includes

– point configurations/hyperplane arrangements,
– frameworks
– subspace arrangements, and
– polytopes and polyhedra,

• you learn to know (and appreciate) the most important results in Discrete Geometry,
which includes both simple & basic as well as striking key results,

• you get to learn and practice important ideas and techniques from Discrete Geometry
(many of which are interesting also for other domains of Mathematics), and

• You learn about current research topics and problems treated in Discrete Geometry.
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1 Some highlights to start with

1.1 Point configurations

Proposition 1.1 (Sylvester–Gallai 1893/1944). Every finite set of n points in the plane, not all
on a line, n large, defines an “ordinary” line, which contain exactly 2 of the points.

The “BOOK proof” for this result is due to L. M. Kelly [1].

Theorem/Problem 1.2 (Green–Tao 2012 [4]). Every finite set of n points in the plane, not all
on a line, n large, defines at least n/2 “ordinary” lines, which contain exactly 2 of the points.
How large does n have to be for this to be true? n > 13?

Theorem/Problem 1.3 (Blagojevic–Matschke–Ziegler 2009 [2]). For d ≥ 1 and a prime r,
any (r − 1)(d + 1) + 1 colored points in Rd, where no r points have the same color, can be
partitioned into r “rainbow” subsets, in which no 2 points have the same color, such that the
convex hulls of the r blocks have a point in common.
Is this also true if r is not a prime? How about d = 2 and r = 4, cf. [6]?

1.2 Polytopes

Theorem 1.4 (Schläfli 1852). The complete classification of regular polytopes in Rd:
– d-simplex (d ≥ 1)
– the regular n-gon (d = 2, n ≥ 3)
– d-cube and d-crosspolytope (d ≥ 2)
– icosahedron and dodecahedron (d = 3)
– 24-cell (d = 4)
– 120-cell and 600-cell (d = 4)

Theorem/Problem 1.5 (Santos 2012 [9]). There is a simple polytope of dimension d = 43 and
n = 86 facets, whose graph diameter is not, as conjectured by Hirsch (1957), at most 43.
What is the largest possible graph diameter for a d-dimensional polytope with n facets? Is it a
polynomial function of n?

1.3 Sphere configurations/packings/tilings

Theorem/Problem 1.6 (see [8]). For d ≥ 2, the kissing number κd denotes the maximal number
of non-overlapping unit spheres that can simultaneously touch (“kiss”) a given unit sphere
in Rd.
d = 2: κ2 = 6, “hexagon configuration”, unique
d = 3: κ3 = 12, “dodecahedron configuration”, not unique
d = 4: κ4 = 24 (Musin 2008 [7]) “24-cell”, unique?
d = 8: κ8 = 240, E8 lattice, unique?
d = 24: κ24 = 196560, “Leech lattice”, unique?
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Theorem/Problem 1.7 (Engel 1980 [3] [5] [10]). There is a stereohedron (that is, a 3-dimensional
polytope whose congruent copies tile R3) with 38 facets. But is the maximal number of facets
of a stereohedron in R3 bounded at all?

[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Heidelberg
Berlin, fourth edition, 2009.

[2] Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler. Optimal bounds for the
colored Tverberg problem. Preprint, October 2009, 10 pages; revised November 2009, 11 pages; J.
European Math. Soc., to appear; http://arXiv.org/abs/0910.4987.

[3] Peter Engel. Über Wirkungsbereichsteilungen von kubischer Symmetrie. Zeitschrift f. Kristallo-
graphie, 154:199–215, 1981.

[4] Ben Green and Terence Tao. On sets defining few ordinary lines. Preprint, August 2012, 72 pages,
http://arxiv.org/abs/1208.4714.

[5] Branko Grünbaum and Geoffrey C. Shephard. Tilings with congruent tiles. Bulletin Amer. Math.
Soc., 3:951–973, 1980.

[6] Benjamin Matschke and Günter M. Ziegler. Die Rätselseite: Zehn bunte Punkte in der Ebene.
Mitteilungen der DMV, 18(3):171, 2010. http://page.math.tu-berlin.de/~mdmv/
archive/18/mdmv-18-3-171.pdf.

[7] Oleg R. Musin. The kissing number in four dimensions. Annals of Mathematics, 168:1–32, 2008.

[8] Florian Pfender and Günter M. Ziegler. Kissing numbers, sphere packings, and some unexpected
proofs. Notices of the AMS, 51(8):873–883, September 2004.

[9] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Math., 176:383–412,
2012.

[10] Moritz Schmitt and Günter M. Ziegler. Ten problems. In M. Senechal, editor, Shaping Space.
Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, pages 279–289 and 315–
319. Springer, New York, 2013.

End of class on October 15
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2 Basic structures in discrete geometry

2.1 Convex sets, intersections and separation

2.1.1 Convex sets

Geometry in Rd (or in any finite-dimensional vector space over a real closed field . . . )

Definition 2.1 (Convex set). A set S ⊆ Rd is convex if λp+µq ∈ S for all p, q ∈ S, λ, µ ∈ R≥0,
λ+ µ = 1.

Lemma 2.2. S ⊆ Rd is convex if and only if
∑k

i=1 λixi ∈ S for all k ≥ 1, x1, . . . , xk ∈ S,
λ1, . . . , λk ∈ R, λ1, . . . , λk ≥ 0,

∑k
i=1 λi = 1.

Proof. For “if” take the special case k = 2.
For “only if” we use induction on k, where the case k = 1 is vacuous and k = 2 is clear.
Without loss of generality, 0 < xk < 1. Now rewrite

∑k
i=1 λixi as

(1− λk)
k−1∑
i=1

λi
1− λk

xi + λkxk

Compare:
• U ⊆ Rd is a linear subspace if λp+ µq ∈ S for all p, q ∈ S, λ, µ ∈ R.
• U ⊆ Rd is an affine subspace if λp+ µq ∈ S for all p, q ∈ S, λ, µ ∈ R, λ+ µ = 1.

2.1.2 Operations on convex sets

Lemma 2.3 (Operations on convex sets). Let K,K ′ ⊆ Rd be convex sets.
• K ∩K ′ ⊆ Rd is convex.
• K ×K ′ ⊆ Rd+d is convex.
• For any affine map f : Rd → Re, x 7→ Ax+ b, the image f(K) is convex.
• The Minkowski sum K +K ′ := {x+ y : x ∈ K, y ∈ K ′} is convex.

Exercise 2.4. Interpret the Minkowski sum as the image of an affine map applied to a product.

Lemma 2.5. Hyperplanes H = {x ∈ Rd : atx = α} are convex.
Open halfspaces H+ = {x ∈ Rd : atx > α} and H− = {x ∈ Rd : atx < α} are convex.

Closed halfspaces H
+

= {x ∈ Rd : atx ≥ α} and H
−

= {x ∈ Rd : atx ≤ α} are convex.

More generally, for A ∈ Rn×d and b ∈ Rn,
• {x ∈ Rd : Ax = 0} is a linear subspace,
• {x ∈ Rd : Ax = b} is an affine subspace,
• {x ∈ Rd : Ax < b} and {x ∈ Rd : Ax ≤ b} are convex subsets of Rd.
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2.1.3 Convex hulls, Radon’s lemma and Helly’s theorem

Definition 2.6 (convex hull). For any S ⊆ Rd, the convex hull of S is defined as

conv(S) :=
⋂{

K ⊆ Rd : K convex, S ⊆ K ⊆ Rd
}
.

Note the analogy to the usual definition of affine hull (an affine subspace) and linear hull (or
span), a vector subspace.

Exercise 2.7. Show that
• conv(S) is convex,
• S ⊆ conv(S),
• S ⊆ S ′ implies conv(S) ⊆ conv(S ′),
• conv(S) = S if S is convex, and
• conv(conv(S)) = conv(S).

Lemma 2.8 (Radon’s1 lemma). Any d+ 2 points p1, . . . , pd+2 ∈ Rd can be partitioned into two
groups (pi)i ∈ I and (pi)i /∈ I whose convex hulls intersect.

Proof. The d+ 2 vectors
(
p1
1

)
, . . . ,

(
pd+2

1

)
∈ Rd+1 are linearly dependent,

λ1

(
p1
1

)
+ · · ·+ λd+2

(
pd+2

1

)
=

(
0

0

)
.

Here not all λi’s are zero, so some are positive, some are negative, and we can take I := {i :
λi > 0} 6= ∅. Thus with Λ :=

∑
i∈I λi > 0 we can rewrite the above equation as∑

i∈I

λi
Λ
pi =

∑
i/∈I

−λi
Λ
pi.

Note that even more so Radon’s lemma holds for any n ≥ d+ 2 points in Rd.

Theorem 2.9 (Helly’s Theorem). Let C1, . . . , CN be a finite family of N ≥ d + 1 convex sets
such that any d + 1 of them have a non-empty intersection. Then the intersection of all N of
them is non-empty as well.

Proof. This is trivial for N = d+ 1. Assume N ≥ d+ 2. We use induction on N .
By induction, for each i there is a point p̄i that lies in all Cj except for possibly Ci. Now form
a Radon partition of the points p̄i, and let p be a corresponding intersection point. About this
point we find that on the one hand it lies in all Ci except for possibly those with i ∈ I , and on
the other hand it lies in all Ci except for possibly those with i /∈ I .

Note that the claim of Helly’s theorem does not follow if we only require that any d sets intersect
(take the Ci to be hyperplanes in general position!) or if we admit infinitely many convex sets
(take Ci := [i,∞)).

End of class on October 16

1In class, I called this Carathéodory’s lemma, which was wrong – Carathéodory’s lemma is a related result,
which you will see on the problem set.
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2.1.4 Separation theorems and supporting hyperplanes

Definition 2.10. A hyperplane H is a supporting hyperplane for a convex set K if K ⊂ H̄+

and K̄ ∩H 6= ∅.

Theorem 2.11 (Separation Theorem). If K,K ′ 6= ∅ are disjoint closed convex sets, where K is
compact, then there is a “separating hyperplane” H with K ⊂ H+ and K ′ ⊂ H−.
Also, in the same situation there is a supporting hyperplane M with K ⊂ M

+
, K ∩M 6= ∅,

and K ′ ⊂M−.

Proof. Define δ := min{‖p− q‖ : p ∈ K, q ∈ K ′}.
The minimum exists, and δ > 0, due to compactness, if we replace K ′ by an intersection
K ′ ∩M ·Bd with a large ball, which does not change the result of the minimization.
Furthermore, by compactness there are p0 ∈ K and q0 ∈ K ′ with ‖p0 − q0‖ = δ.

p0

q0

K

K ′

M H

Now define H and M ′ by

H := {x ∈ Rd : (p0 − q0)tx = (p0 − q0)t(12p0 + 1
2
q0)}

and
M := {x ∈ Rd : (p0 − q0)tx = (p0 − q0)tp0}

and compute.

Example 2.12. Consider the (disjoint, closed) convex sets K := {(x, y) ∈ R2 : y ≤ 0} and
K ′ := {(x, y) ∈ R2 : y ≥ ex}.

Separation theorems like this are extremely useful not only in Discrete Geometry (as we will see
shortly), but also in Optimization. Siehe auch den Hahn–Banach Satz in der Funktionalanalysis.

2.2 Polytopes

Definition 2.13 (Polytope). A polytope is the convex hull of a finite set, that is, a subset of the
form P = conv(S) ⊆ Rd for some finite set S ⊆ Rd.

Examples 2.14. Polytopes: The empty set, any point, any bounded line segment, any triangle,
and any convex polygon (in some Rn) is a polytope.

Definition 2.15 (Simplex). Any convex hull of a set of k+1 affinely independent points (in Rn,
k ≤ n), is a simplex.
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Lemma 2.16. For p1, . . . , pn ∈ Rd, we have

conv({p1, . . . , pn}) = {λ1p1+· · ·+λnpn : λ1, . . . , λn ∈ R, λ1, . . . , λn ≥ 0, λ1+· · ·+λn = 1}.

Proof. For “⊆” we note that the RHS contains p1, . . . , pn, and it is convex.
On the other hand, “⊇” follows from Lemma 2.2.

Definition 2.17 (Standard simplex). The (n− 1)-dimensional standard simplex in Rn is

∆n−1 = {(λ1, . . . , λn) ∈ Rn, λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}
= conv{e1, . . . , en}.

Corollary 2.18. The polytopes are exactly the affine images of the standard simplices.

Proof. . . . under the linear (!) map given by (λ1, . . . , λn) 7→ λ1p1 + · · ·+ λnpn.

Definition 2.19 (Dimension). The dimension of a polytope (and more generally, of a convex
set) is defined as the dimension of its affine hull.

Lemma 2.20. The dimension of conv({p1, . . . , pn}) is rank
(p1 · · · pn

1 · · · 1

)
− 1.

End of class on October 22

2.2.1 Faces

We are interested in the boundary structure of convex polytopes, as we can describe it in terms
of vertices, edges, etc.

Definition 2.21 (Faces). A face of a convex polytope P is any subset of the form F = {x ∈ P :
atx = α}, where the linear inequality atx ≤ α is valid for P (that is, it holds for all x ∈ P ).

Thus the empty set ∅ and the polytope P itself are faces, the trivial faces. All other faces are
known as the non-trivial faces.

Lemma 2.22. The non-trivial faces F of P are of the form F = P ∩H , whereH is a supporting
hyperplane of P .

Lemma 2.23. Every face of a polytope is a polytope.

Proof. Let P := conv(S) be a polytope and let F be a face of P defined by the inequality
atx ≤ α. Define S0 := {p ∈ S : atp = α} and S− := {p ∈ S : atp < α}. Then S = S0 ∪ S−.
Now a simple calculation shows that F = conv(S0): The convex combination λ1p1+· · ·+λnpn
satisfies the inequality with equality if and only if λi = 0 for all pi ∈ S−. To see this, write for
example S− = {p1, . . . , pk} and S0 = {p′1, . . . , p′`}, and calculate for x ∈ F :

α = atx = at((λ1p1 + · · ·+ λkpk) + (λ′1p
′
1 + . . . λ′`p

′
`)) (1)

= (λ1a
tp1 + · · ·+ λka

tpk) + (λ′1a
tp′1 + . . . λ′`a

tp′`)) (2)
≤ (λ1α + · · ·+ λkα) + (λ′1α + . . . λ′`α) (3)
= α(λ1 + · · ·+ λk + λ′1 + . . . λ′`) = α, (4)

where λiatpi ≤ λiα for 1 ≤ i ≤ k and λ′ja
tp′j = λ′jα for 1 ≤ j ≤ `. For this to hold, we must

have λiatpi = λiα, but this holds only if λi = 0 for all i. Thus we have x = λ′1p
′
1 + . . . λ′`p

′
`, so

x ∈ conv(S0).
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Definition 2.24. Let P be a polytope of dimension d.
The 0-dimensional faces are called vertices.
The 1-dimensional faces are called edges.
The (d− 2)-dimensional faces are called ridges.
The (d− 1)-dimensional faces are called facets.
A k-dimensional face will also be called a k-face.
The set of all vertices of P is called the vertex set of P , denoted V (P ).

Proposition 2.25. Every polytope is the convex hull of its vertex set, P = conv(V (P )).
Moreover, if P = conv(S), then V (P ) ⊆ S. In particular, every polytope has finitely many
vertices.

Proof. Let P = conv(S) and replace S by an inclusion-minimal subset V = V (P ) with the
property that P = conv(V ). Thus none of the points p ∈ V are contained in the convex
hull of the others, that is, p /∈ conv(V \p). Now the Separation Theorem 2.11, applied to the
convex sets {p} and conv(V \p), implies that there is a supporting hyperplane for {p} (that is, a
hyperplane through p) which does not meet conv(V \p).
We take the corresponding linear inequality, which is satisfied by p with equality, and by all
points in conv(V \p) strictly. Thus {p} is a face: a vertex.

Proposition 2.26. Every face of a face of P is a face of P .

Proof. Let F ⊂ P be a face, defined by atx ≤ α. Let G ⊂ F be a face, defined by btx ≤ β.
Then for sufficiently small ε > 0, the inequality

(a+ εb)tx ≤ α + εβ

is strictly satisfied for all vertices in V (P )\F , since this is strictly satisfied for ε = 0, so this
leads to finitely-many conditions for ε to be “small enough.” It is also strictly satisfied on F \G
if ε > 0, and it is satisfied with equality on G.

P
F

atx ≤ α

btx ≤ β

Now let x be any point in P \ F . Then we can write x as a convex combination of the vertices
in P , say

x = (λ1v1 + · · ·+ λkvk) + (λ′1v
′
1 + . . . λ′`v

′
`)

for S− = {v1, . . . , vk} and S0 = {v′1, . . . , v′`} as in the proof of Lemma 2.23. As x does not
lie in F , the coefficient of at least one vertex vi of P not in F is positive. This implies that the
inequality displayed above is strict for x.

12



Corollary 2.27. Every face F of a polytope P is the convex hull of the vertices of P that are
contained in F :

V (F ) = F ∩ V (P ).

Proof. “⊆” is from Proposition 2.26. “⊇” is trivial.

End of class on October 23

In particular, any polytope has only finitely many faces.

Lemma 2.28. Any intersection of faces of a polytope P is a face of P .

Proof. Add the inequalities.

Definition 2.29 (Vertex figure). Let v be a vertex of a d-dimensional polytope P , and let H be
a hyperplane that separates v from conv(V (P ) \ {v}). Then

P/v := P ∩H

is called a vertex figure of P at v.

Proposition 2.30. If P = conv(S ∪ {v}) with atv > α while as < α for s ∈ S, where
H = {x ∈ Rd : at = α}, then

P/v = conv
{ atv − α

atv − ats
s+

α − ats
atv − ats

v : s ∈ S
}
.

In particular, P/v is a polytope.

Proof. “⊇”: the points s̄ := atv− α
atv−atss+ α −ats

atv−atsv have been constructed as points λs+ (1− λ)v
such that ats̄ = α, so s̄ ∈ P/v.
“⊆”: calculate that if x ∈ conv(S ∪ {v}) satisfies atx = α, then it can be written as a convex
combination of the points s̄. For this, write

x =
∑
i

λisi + λ0v

=
∑
i

λi
atv − atsi
atv − α

atv − α

atv − atsi
si + λ0v

=
∑
i

λi
atv − atsi
atv − α

( atv − α

atv − atsi
si +

α − atsi
atv − atsi

v
)

+
(
λ0 −

∑
i

λi
α − atsi
atv − α

)
v

=
∑
i

λi
atv − atsi
atv − α

s̄i +
(
λ0 −

α
∑

i λi −
∑

i λia
tsi

atv − α

)
v.

At this point we use that x ∈ H , that is, atx =
∑

i λia
tsi + λ0a

tv = α, and that this was a
convex combination, so

∑
i λi = 1 − λ0, to conclude that the last term in large parentheses

is 0.

Exercise 2.31. Let P := conv{π(±1,±1, 0, 0) : π ∈ S4} be the convex hull of all the vectors
that have two ±1 entries and two zero coordinates.

13



• How many vectors are these?
• Why are they all vertices?
• Why do they all have the same vertex figure?
• Compute one vertex figure.

Proposition 2.32. For any vertex v of a d-polytope P , the k-dimensional faces of P/v are in an
inclusion-preserving bijection with the (k + 1)-dimensional faces of P that contain v.
In particular, P/v is a polytope of dimension d− 1.

Proof. Clearly if F is a face of P , then F ∩H is a face of P ∩H = P/v.
Note that v /∈ H . Thus every (k + 1)-face F ⊆ P with v ∈ P defines a k-face F/v of P/v:
From the previous proof we can see that aff((F ∩H) ∪ {v}) = aff(F ).
For the converse, letG ⊆ P/v be a k-face, defined by the inequality btx ≤ β. Then we calculate
that this inequality, plus a suitable (not necessarily positive!) multiple of the equation atx = α
defining H , is satisfied with equality on P ∩ (aff(G∪{v})), but strictly on all other points of P .
Explicitly, the inequality we consider is

(bt + µat)x ≤ β + µα, (5)

and this will be satisfied with equality on v if (bt + µat)v = β + µα, that is, if µ = − btv−β
atv−α ,

where the denominator is positive. This inequality (5) is valid on P/v and valid with equality
on v. Let P = conv(S ∪ {v}. Then the inequality is valid on all points of S as well, since a
point s ∈ S that violates it would give rise to s̄ ∈ P/v that violates it as well.
Thus

Ĝ := P ∩ (aff(G ∪ {v}))

is the desired (k + 1)-face of P .

End of class on October 29

2.2.2 Order theory and the face lattice

Definition 2.33 (Posets and lattices). A poset is a partially ordered set, that is, a set S with a
binary relation “≤” that is reflexive (x ≤ x for all x ∈ S), asymmetric (x ≤ y ≤ x implies
x = y) and transitive (x ≤ y ≤ z implies x ≤ z). (All posets we consider are finite.) Formally,
the poset could be written (S,≤), but it is customary to write the same letter S for the poset.
An interval in a poset (S,≤) is a subposet (i.e., a subset with the induced partial order) of the
form

[x, y] := ({z ∈ S : x ≤ z ≤ y},≤)

for x, y ∈ S, x ≤ y.
A chain in a poset is a totally-ordered subset.
A poset is bounded if it has a unique minimal element, denoted 0̂, and a unique maximal ele-
ment, denoted 1̂.
A poset is graded if it has a unique minimal element 0̂, and if for every element x of the poset,
all maximal chains from 0̂ to x have the same length, called the rank of the element, usually

14



denoted r(x). The function r : S → N0 is then called the rank function of S. If a poset is
graded and has a maximal element 1̂, we write r(S) := r(1̂) for the rank of the poset.
A poset is a lattice if any two elements a, b have a unique minimal upper bound, denoted a ∨ b,
called the join of a and b, and a unique maximal lower bound, denoted a∧b, and called the meet
of a and b.

Exercise 2.34. Let (Q,≤) be a finite partial order. Show that any two of the following properties
yield the third:

1. The poset is bounded.
2. Meets exist.
3. Joins exist.

Exercise 2.35. Let Q be a finite lattice, and A be an arbitrary subset. Then A has a unique
minimal upper bound, the join

∨
A, and a unique maximal lower bound, the meet

∧
A.

Theorem 2.36 (The polytope face lattice). The face poset (F ,⊂) of any polytope is a finite
graded lattice, denoted L = L(P ), of rank r(L(P )) = dim(P ) + 1.

Proof. This is a finite bounded poset, with minimal element 0̂ = ∅ and maximal element 1̂ = P .
Meet exists, as clearly F ∧ F ′ = F ∩ F ′ is the largest face contained in both F and F ′. (The
intersection is a face by Lemma 2.28.) Thus L(P ) is a lattice.
If G ⊂ F are faces, then in particular G is a face of F , and thus dim(G) < dim(F ). Thus all
we have to prove is that if dim(F ) ≥ dim(G) + 2, then there is a face H with G ⊂ H ⊂ F .
If F ⊂ P , then dim(F ) < dim(P ), so we are done by induction.
If ∅ ⊂ G, then G has a vertex v, and [G,F ] ⊆ [v, P ] = L(P/v), where dim(P/v) < dim(P ),
so we are done by induction.
If G = ∅ and F = P , where dim(P ) ≥ 1, then P has a vertex w, where ∅ ⊂ {w} ⊂ P .

Definition 2.37 (Combinatorially equivalent). Two polytopes P and P ′ are combinatorially
equivalent if their face lattices L,L′ are isomorphic as posets, that is, if there is a bijection
f : L→ L′ such that x ≤L y holds in P if and only if f(x) ≤L′ f(y) holds in P ′.

Exercise 2.38. Define “isomorphic” for posets, and for lattices. Show that if Q is a poset and
L is a lattice, and if Q and L are isomorphic as posets, then Q is a lattice, and Q and L are also
isomorphic as lattices.

Exercise 2.39. Let us consider the posetD(n) of all divisors of the natural number n (examples
to try: 24 and 42 and 64), ordered by divisibility. Are these posets? Are they bounded? Are
they lattices? Graded? What is the rank function? Can you describe join and meet?
For which n is there a polytope with D(n) isomorphic to its face lattice?

Lemma 2.40. If two polytopes P, P ′ are affinely isomorphic (that is, if there is an affine bijective
map P → P ′), then they are combinatorially equivalent. The converse is wrong.

Lemma 2.41 (Face lattice of a simplex). Let ∆k−1 be a (k − 1)-dimensional simplex (with k
vertices). Its face lattice is isomorphic to the poset of all subsets of a k-element set, ordered by
inclusion known as the Boolean algebra Bk of rank k, as given for example by (2[k],⊆), where
2[k] denotes the collection of all subsets of [k] := {1, 2, . . . , k}.
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Proof. Any two (k − 1)-simplices are affinely equivalent.
Any subset of the vertex set of a simplex defines a face, which is a simplex.

Exercise 2.42. Prove that if any subset of vertex set of a polytope defines a face, then the
polytope is a simplex.

Theorem 2.43 (Intervals in polytope face lattices). Let G ⊆ F be faces of a polytope P . Then
the interval

[G,F ] = ({H ∈ L(P ) : G ⊆ H ⊆ F},⊆)

of L(P ) is the face lattice of a polytope of dimension dim(F )− dim(G)− 1.
In particular, if G = ∅, then [G,F ] = L(F ).
In particular, if F = P and G = {v} is a vertex, then [G,F ] = L(P/v).

Proof. The two “in particular” statements follow from Propositions 2.26 and 2.32. Now we can
use induction.

Corollary 2.44 (Diamond property). Any interval [x, y] of length 2 in a polytope face lattice
contains exactly two elements z with x < z < y.

This “harmless lemma” has substantial consequences.

Corollary 2.45. For every polytope, every face is the minimal face containing a certain set of
vertices. (More precisely, every face is the convex hull of the vertices it contains.)
Simultaneously, every face is an intersection of facets (it is the intersection of the facets it is
contained in).

Proof. This says that every element in the face lattice of a polytope is a join of vertices, and a
meet of facets.
This can be phrased and proved entirely in lattice-theoretic language: Take a graded lattice of
rank d + 1 with the diamond property. Then every element of rank r(x) ≤ d is a meet of
elements of rank d− 1 (which would be called “co-atoms”). Simultaneously, every element of
rank r(x) > 0 is a join of elements of rank 1 (which are called “atoms”).
To prove this, note that for an element of rank k ≥ 2 the diamond property shows that it is the
join of two elements of rank k − 1, and by induction those are joins of atoms. Dually for meets
of coatoms.

End of class on October 30

2.2.3 Simple and simplicial polytopes

Definition 2.46. A polytope is simplicial if all its facets are simplices.
A polytope is simple if all its vertex figures are simplices.

Lemma 2.47. A polytope is simplicial if all the proper lower intervals in its face lattice are
boolean.
A polytope is simple if all the proper upper intervals in its face lattice are boolean.
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Thus, in particular, to be simplicial or simple is a “combinatorial” property: It can be told from
the face lattice.
Note that if the set of n > d points V ⊂ Rd is “in general position” in the sense that no d + 1
points lie on a hyperplane, then P = conv(S) is a simplicial d-polytope.

Exercise 2.48. Every polytope that is both simple and simplicial is a simplex, or it has dimen-
sion 2.

2.2.4 V-polytopes andH-polytopes: The representation theorem

Theorem 2.49 (Minkowski–Weyl Representation Theorem). Every d-dimensional polytope in Rd

can be represented in the following equivalent ways:

V-polytope The subset P is given as a convex hull of a finite set V ⊂ Rd:

P = conv(V ).

This representation is unique if V is the set of all vertices of P .

H-polytope The subset P is given as the set of solutions of a finite system of linear inequalities,

P = {x ∈ Rd : Ax ≤ a}.

This representation is unique if the system “Ax ≤ a” consists of one facet-defining linear
inequality for each facet of P . (Uniqueness up to permutation of the inequalities, and up
to taking positive multiples of the facet-defining inequalities.)

Proof. A V-polytope is a special representation of what we have up to now called simply a
polytope. The uniqueness was proven in Proposition 2.25.
Every V-polytope is anH-polytope:
The fact that every V-polytope is the solution of a finite set of inequalities follows from a
procedure called “Fourier–Motzkin elimination”. For this let V = (v1, . . . , vn) ∈ Rd×n. We
write

Pd+n := {
(
x
λ

)
∈ Rd+n : x = λ1v1 + · · ·+ λnvn,

λ1 + · · ·+ λn = 1,

λ1, . . . , λn ≥ 0}

This Pd+n ⊂ Rd+n is clearly an H-polytope (a bounded solution of a linear system of inequal-
ities); indeed, it is an (n− 1)-dimensional simplex, with vertices

(
vi
ei

)
. Furthermore, projection

of Pd+n to Rd by “deleting the last n coordinates” yields P . Thus we simply have to show that
“deleting the last coordinate” maps anH-polytope to anH-polytope.
For this, let π : P ′ → P ′′,

(
x
y

)
7→ x be such a projection map x ∈ Rm, y ∈ R, where P ′ is

given by linear inequalities (and possibly equations). A point x lies in P ′′ if
(
x
y

)
lies in P ′ for

some y. Such an y exists if all the upper bounds for y (which are given by linear inequalites
in the other coordinates) are larger or equal than all the lower bounds for y (which are given
similarly). Thus
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“all upper bounds on y are larger or equal all lower bounds”

yields a new system of inequalities that defines P ′′. (If there are equations fixing y, then those
have to be taken in account as well, and have to be compatible with the inequalities.)
We leave the proof of the uniqueness part for later.

End of class on November 5

EveryH-polyhedron is a V-polyhedron:
For this we prove a similar statement for more general sets: Every subset Q ⊂ Rd that is given
in the form

Q = {x ∈ Rd : Ax ≤ a},

for some A ∈ Rn×d and a ∈ Rn, which we call an H-polyhedron (not necessarily bounded!)
can be written as a V-polyhedron, in the form

Q = conv(V ) + cone(Y ),

where
cone(Y ) = {µ1y1 + · · ·+ µmym : µ1, . . . , µm ≥ 0}

is a conical combination of the vectors in the finite set Y = {y1, . . . , ym} ⊂ Rd.
To prove this, we interpret the set Q as given above as theH-polyhedron

Q̂ = {
(
x
z

)
∈ Rd+n : Ax ≤ z},

intersected with the subspace {
(
x
z

)
∈ Rd+n : z = a}.

This Q̂we write as a V-polyhedron: It is the sum of the linear subspace {
(
x
z

)
∈ Rd+n : Ax = z},

which has a cone basis given by the vectors ±
(
ei
ai

)
, and an orthant {

(
x
z

)
∈ Rd+n : x = 0, z ≥ 0}

spanned as a cone by unit vectors
(
0
ej

)
.

So it suffices to show that the intersection of any V-polyhedron Q̂ with a hyperplane of the form
Hj := {

(
x
z

)
∈ Rd+n : zj = aj} is again a V-polyhedron. So let’s consider

Q̂ = conv(W ) + cone(U) = conv(W+ ∪W− ∪W 0) + cone(U+ ∪ U− ∪ U0),

where we have split the set W into the subsets lying above, on, or below the hyperplane H , and
similarly with U with the hyperplane H0

j := {
(
x
z

)
∈ Rd+n : zj = 0}.

In this case we get lots of points in Q̂ ∩Hj:
• points in W 0,
• intersections of Hj with segments between a point in W+ and one in W−,
• intersections of Hj with rays starting from a point in W+ with direction in U−, and
• intersections of Hj with rays starting from a point in W− with direction in U+.

Let Vj(Q̂) be the set of all these points. Similarly, collect the following directions in Q̂ ∩H0
j :

• directions in U0, and
• directions obtained by a suitable combination of a direction in U+ and one in U−.

Let Rj(Q̂) be the set of all these directions. Then it is clear that

Q̂ ∩Hj ⊃ cone(Vj(Q̂)) + cone(Rj(Q̂)).
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To prove that the converse inclusion “⊆” holds, we have to take any point x ∈ Q̂∩Hj and split
it into contributions coming from the points and rays we have collected. It turns out that this is
equivalent to finding a point in a given transportation polytope – a problem that you will solve
for Problem Set 4. (Details for the computation omitted here. Example done in class.)
EveryH-polytope is a V-polytope:
Thus we have seen that any intersection of anH-polyhedron with a coordinate subspace is also
a V-polyhedron, of the form conv(V ) + cone(Y ). If the intersection is bounded, then clearly
the V-polyhedron is of the form conv(V ), i.e., a V-polytope.

Remark 2.50. Fourier–Motzin elimination is constructive, and not hard to implement. It is
contained in software systems such as PORTA and polymake.
In particular, instead of solving for upper bounds and lower bounds in a variable we want to
eliminate, we just take two inequalities atx ≤ α and btx ≤ β where for some variable xi the
coefficient in one is positive and in the other is negative, say ai > 0 and bi < 0. Then the
positive combination of the two inequalities

[(−bi)at + (ai)b
t]tx ≤ (−bi)α + (ai)β

is also valid, and it does not involve the variable xi any more: This is the elimination step
performed by adding/combining inequalities.
However, the elimination algorithm is also badly exponential: If we are “unlucky”, every step
transforms a system of n inequalities into (n

2
)2 inequalities. So within a few steps the number

of inequalities can “explode”. The result will typically contain many redundant inequalities, but
these are not easy to detect.

2.2.5 Polarity/Duality

Definition 2.51. Let K ⊂ Rd be a subset. Its polar is

K∗ = {y ∈ Rd : ytx ≤ 1 for all x ∈ K}.

Exercise. K∗ = conv(K)∗ = conv(K ∪ {0})∗.

Exercise. Compute and draw K∗ for axis parallel rectangles in the plane with opposite vertices
(i) (0, 0) and (M, 1), for M > 0 large.

(ii) (−ε,−ε) and (M, 1), for M > 0 large, ε > 0 small.
(iii) (ε, ε) and (M, 1), for M > 0 large, ε > 0 small.
What happens for ε→ 0, M →∞?

Lemma 2.52. Let K,L ⊆ Rd be a closed convex set.
(i) 0 ∈ K∗.

(ii) K∗ is closed and convex.
(iii) K ⊆ L implies K∗ ⊇ L∗.
(iv) If 0 ∈ K, then K∗∗ = K.
(v) If 0 ∈ K,L, then K ⊆ L if and only if K∗ ⊇ L∗.

(vi) K is bounded if and only if K∗ has 0 in its interior.
(vii) K∗ is bounded if and only if K has 0 in its interior.
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Proof. Items (i), (ii) and (iii) are easy to see/calculate.
End of class on November 6

For (iv), we have K ⊆ K∗∗ by definition. If z /∈ K, then as K is closed and convex, by the
Separation Theorem there are a vector y 6= 0 and γ ∈ R such that ytx < γ holds for all x ∈ K,
but not for x = z, that is, such that ytz > γ. As 0 ∈ K, we get γ > 0, and after possibly
rescaling we may assume γ = 1. Thus we have that (1) ytx < 1 holds for all x ∈ K, but (2)
ytz > γ. But the first condition says that y ∈ K∗, and thus the second one says that z /∈ K∗∗.
In other words, we have proved that K∗∗ ⊆ K.
(iii) and (iv) together yield (v).
Also (iv) immediately implies (vi) and (vii), asK is bounded if and only ifK ⊆ B(0, R), where
B(0, R) is the ball with center 0 and radius R, for some suitably large R, and similarly K has 0
in the interior if and only if B(0, ε) for a suitably small ε > 0.

Interestingly enough, we get a very explicit description of the polar of a polytope — assuming
that we have both a V- and anH-representation available.

Theorem 2.53 (Polarity for polytopes). Let P be a d-polytope in Rd with 0 in its interior, with

P = conv(V ) = {x ∈ Rd : Ax ≤ 1}

with V ∈ Rd×n and A ∈ Rm×d, that is, a convex hull of n points resp. the solution set of m
inequalities.
Then the polar P ∗ is also a d-polytope with 0 in its interior, and

P ∗ = conv(At) = {y ∈ Rd : V ty ≤ 1}.

Under this correspondence, the vertices of P correspond to the facets of P ∗, and vice versa.
In particular, if the set V was chosen minimal (that is, the set of vertices of P ) and the system
“Ax ≤ 1” was minimal, then Ax ≤ 1 consists of exactly one facet-defining inequality for each
facet of P .

Proof (Part I). For this, read “P = conv(V )” as saying that P is the convex hull of the columns
of V . At the same time, “P = {x ∈ Rd : Ax ≤ 1}” says that P is the polar of the set of columns
of At. With this, everything follows from K∗∗, if we note that the first representation yields that
P is bounded, and the second one implies that 0 is in the interior.

Exercise 2.54. For

P = conv(V ) = {x ∈ Rd : Ax ≤ 1} and P ∗ = conv(At) = {y ∈ Rd : V ty ≤ 1},

describe all the faces of P ∗ in terms of the faces of P — that is, give theH-description of a face
F � of P ∗ in terms of the V-description of P and F , etc.

Theorem 2.55 (Duality for polytopes). Let P be a d-polytope in Rd wit 0 in the interior and let
P ∗ be its polar, then the face lattice L(P ∗) is the “opposite” of L(P ).

Proof. There are two ways to prove this. The “hard way” is to go via Exercise 2.54, and to
describe a precise match between the faces F ⊂ P and “corresponding” faces F � ⊆ P∗.
The easier way goes via the following observation, which plainly says that the incidences be-
tween the vertices and the facets of a polytope already fix the combinatorial type (i.e., the face
lattice).
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Terminology: If L(Q) = L(P )opp, then we say that Q is a dual of P . Note that every polytope
has many duals, but only one polar polytope (if it has 0 in the interior etc.)

Corollary 2.56. A polytope is P is simple if and only if P ∗ is simplicial, and vice versa.

Theorem 2.57. Let P be a d-dimensional polytope with n vertices and m facets.
Then the combinatorial type of P (that is, the face lattice L(P )) is determined by the vertex–
facet incidences, that is, by the matrix

I(P ) = (κij) ∈ {0, 1}n×m,

where κij = 1 if vi ∈ Fj , and κij = 0 otherwise, for some arbitrary labelling v1, . . . , vn of the
vertices and F1, . . . , Fm of the facets.

Proof. The faces are the intersections of facets, and the vertex sets of faces are exactly the
intersections of vertex sets of facets, by Corollaries 2.27 and 2.45.
Thus the vertex sets of facets are given by the rows of the matrix I(P ), and the vertex sets
of faces are exactly the intersections of these rows, which we interpret as incidence vectors of
vertex sets of facets.

End of class on November 12

Lemma 2.58 (Characterization of vertices). Let P = conv(V ) = {x ∈ Rd : Ax ≤ 1}. Then
v0 ∈ Rd is a vertex of P if and only if any one of the following conditions are satisfied:

(i) {v0} is a face of dimension 0, that is, v0 ∈ P but there is an inequality atx ≤ α such that
atv0 = α, while atvi < α for all other vi ∈ V .

(ii) v0 ∈ V , and there is an inequality atx ≤ 1 such that atv0 = 1, while atvi < 1 for all other
vi ∈ V .

(iii) v0 is a point in P such that {v0} is an intersection of some facets of P .
(iv) v0 is a point in P such that {v0} is an intersection of d facet-defining hyperplanes Hi =
{x ∈ Rd : atix = 1} (1 ≤ i ≤ d).

Proof. (i) is the definition of a vertex (0-dimensional face).
(ii): As 0 lies in the interior of P , the inequality from (i) has to have α > 0, so we can rescale to
get α = 1. Also v0 lies in V , otherwise we would have atv < 1 for all v ∈ V and thus atx < 1
for all x ∈ P .
(iii): We know that every face (and thus every vertex) is an intersection of facets. Conversely,
every intersection of facets is a face, and if the face is a single point, it is a vertex.
(iv): If v0 is a vertex, then it is contained in a maximal chain of faces v0 = G0 ⊂ G1 ⊂ Gd−2 ⊂
Gd−1, where Gi is a face of dimension i and Gi = Gi+1 ∩ Fi, where Fi is a facet — since every
face is an intersection of facets. Let Hi = aff(Fi), then we have that Fi ⊂ Hi and Fi = P ∩Hi,
and thus

Gi = Gi+1 ∩ Fi ⊆ Gi+1 ∩Hi ⊆ Gi+1 ∩ P ∩Hi = Gi+1 ∩ Fi,

which yields Gi = Gi+1 ∩Hi. We conclude that each of the intersections Hd−1, Hd−1 ∩Hd−2,
Hd−1 ∩Hd−2 ∩ · · · ∩H0 strictly contains the next one — and thus the last one in the sequence
has dimension 0, it is a single point, namely G0 = {v0}. On the other hand, v0 is then an
intersection of facets, so it is a vertex.
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Lemma 2.59 (Characterization of facets). Let P = conv(V ) = {x ∈ Rd : Ax ≤ 1}. Then
F ⊂ P is a facet of P if and only if any one of the following conditions are satisfied:

(i) F = {x ∈ P : atx = α} for an inequality atx ≤ α that is valid for all of P , with
dim(F ) = d− 1.

(ii) F = {x ∈ P : atx = α} for an inequality atx ≤ α that is valid for all of P , with d
affinely-independent points v1, . . . , vd from the set V that satisfy atvi = 1.

(iii) F = {x ∈ P : atix = 1} for an inequality atix ≤ 1 from the system Ax ≤ 1, with d
affinely-independent points v1, . . . , vd from the set V that satisfy ativj = 1.

Proof. (i) is the definition of a facet.
(ii): Let V0 ⊆ V be the subset of all the vi ∈ V that satisfy the inequality from (i) with equality.
If the affine hull of these points has dimension d− 1, then we can choose d that span this hull.
If the affine hull has smaller dimension, then we note F ⊂ aff(V0), so F is not a facet.
(iii): Here the new information is that the facet-defining inequalities all come from the system
Ax ≤ 1. However, note that the inequality atx ≤ 1 that satisfies atvj = 1 for 1 ≤ j ≤ d is
unique. If it were not in the inequality system, then the barycenter 1

d
(v+1 · · · + vd) would lie in

the interior of the set defined by Ax ≤ 1; on the other hand, it lies on the boundary due to the
inequality atx ≤ 1.

Proof of Theorem 2.53 (Part II). From the characterization Lemma 2.59, we see that the facets
of P are exactly given by the inequalities of the system Ax ≤ 1, under the assumption that the
system was chosen to be minimal.
The assumption that the two systems for P are minimal implies that the systems for P ∗ are also
minimal, otherwise we would get a contradiction to P ∗∗ = P .

Proposition 2.60. The incidence matrix I(P ) may be a rather compact encoding of a polytope,
but it is not so easy to read things off.
(1) To get the dimension d of a polytope from I(P ) we have to find a sequence of columns such

that the first column is arbitrary (corresponding to a facet) and each subsequent one is
chosen to have a maximal intersection with the intersection of the previously-chosen ones,
thus yielding the next face of a maximal chain.

(2) The incidence matrix of the polar is the transpose of the matrix: I(P ∗) = I(P )t.
(3) If dim(P ) = d, then P is simplicial if each column of I(P ) contains exactly d ones.
(4) If dim(P ) = d, then P is simple if each row of I(P ) contains exactly d ones.

Proof of Theorem 2.55. With completing the proof of Theorem 2.53, we get that the vertices of
P correspond to the facets of P ∗, and vice versa. Thus the I(P ∗) is the transpose of I(P ), and
thus L(P ∗) is the opposite of L(P ).

2.2.6 The Farkas lemmas

“The Farkas lemma” is a result that comes in many different flavors; it says that if something
happens in polyhedral combinatorics, then there always is a concrete reason. Here is a basic
version:

Proposition 2.61. A system Ax ≤ a has no solution if and only if there is a vector c ≥ 0 such
that ctA = 0 and cta = −1.
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Proof. The Farkas lemmas can be derived from Separation Theorems, or from each other, or
from Fourier–Motzkin. We sketch Fourier–Motzkin: We can eliminate all the variables from
the system Ax ≤ a, such that the resulting system of inequalities 0 ≤ γi has a solution if
and only if the original system has none. Moreover, all inequalities in the resulting system are
non-negative combinations of the inequalities in the original system.
Thus if the resulting system has no solution, then one inequality ready “0 ≤ γi” for some
γi < 0. Indeed, we may rescale to get γi = −1. The inequality is obtained by non-negative
combination, that is, ctA = 0, cta = γi = −1.
Conversely, check that the existence of c implies that the system has no solution.

End of class on November 13
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3 Polytope theory

3.1 Examples, examples, examples

What do we want to know?
• dimension d
• number of vertices f0 = n, number of facets fd−1
• V- andH-description
• f -vector (f0, f1, . . . , fd−1)
• graph
• simple? simplicial?
• [diameter, surface area, volume? – not so much a topic of this course]
• dual polytope?
• symmetries?
• combinatorial type? incidence matrix?
• face lattice L
• etc.

We will mix a discussion of specific (classes of) examples with a discussion of constructions –
which produce new examples.
Note that the various classes of examples we describe will not be disjoint (example: every
simplex is a pyramid, every cube is a prism, a triangle is both a simplex and a polygon, etc.)

3.1.1 Basic building blocks

Example 3.1 (The (regular) convex polygons). Let P be any 2-dimensional polytope, and n =
f0(P ) its number of vertices. Then n ≥ 3 and f1(P ) = n. Any two 2-polytopes with n vertices
are combinatorially equivalent — and they are in particular equivalent to the regular convex
n-gon given by

P2(n) = conv{(cos( k
n
2π), sin( k

n
2π)) : 0 ≤ k ≤ n}.

This example in particular contains the complete classification of 2-dimensional polytopes.

Example 3.2 (The d-simplex). The standard simplex of Definition 2.17 may be described as

∆d = {(λ1, . . . , λn) ∈ Rd+1, λ0, . . . , λd ≥ 0, λ1 + · · ·+ λd+1 = 1}
= conv{e1, . . . , ed+1}.

This is a d-dimensional polytope in Rd+1. It has d + 1 vertices and d + 1 facets; the k-faces
correspond to the (k + 1)-subsets of [d + 1]. In particular, the face lattice is a boolean algebra
Bd+1, and we get

fk(∆d) =

(
d+ 1

k + 1

)
.

The standard d-simplex has the symmetry group Sd+1, acting by permutation of coordinates
(and thus of vertices).
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A full-dimensional version of the standard simplex is obtained by deleting the last coordinate,

∆′d = {(λ1, . . . , λd) ∈ Rd+1, λ0, . . . , λd ≥ 0, λ1 + · · ·+ λd ≤ 1}
= conv(0, e1, . . . , ed).

This simplex has volume 1
d
. It has a smaller symmetry group than ∆d. We leave it as an exercise

to construct and describe a full-dimensional fully-symmetric realization of ∆d.

Example 3.3 (The d-cube). Again there are two very familiar versions of the d-dimensional
cube, the 0/1-cube

C01
d = conv{0, 1}d = {x ∈ Rd : 0 ≤ xk ≤ d} = [0, 1]d

and the ±1-cube

Cd = conv{1,−1}d = {x ∈ Rd : −1 ≤ xk ≤ d} = [−1, 1]d = {x ∈ Rd : ‖x‖∞ ≤ 1}.

They are equivalent by a similarity transformation.
The non-empty k-faces are obtained by choosing k coordinates which have the full range of
[0, 1] resp. [−1, 1] and fixing the other d− k vertices to the lower or upper bound. In particular,
this yields

fk(Cd) = 2d−k
(
d

k

)
for k ≥ 0, while f−1 = 1. In particular, the d-cube has 3d non-empty faces.
The d-cube is simple.
The symmetry group of Cd is generated by the permutations of coordinates and by the reflec-
tions in coordinate hyperplanes. It has 2dd! elements, and is known as the group of signed
permutations, or as the hyperoctahedral group.

Exercise 3.4. For which k = k(d) does the d-cube have the largest number of k-faces? To
answer this, analyze the quotients fk/fk−1, and show that they decrease with k. Conclude that
the f -vector of the d-cube is unimodal, that is,

f0 < f1 < · · · < fk(d) ≥ fk(d)+1 > · · · > fd−1.

Example 3.5 (The d-dimensional crosspolytope2). The standard coordinates for the d-dimensional
crosspolytope are given by

C∗d = conv{±e1, . . . ,±ed}
= {x ∈ Rd : ±x1 + · · ·+±xd ≤ 1} = {x ∈ Rd : ‖x‖1 ≤ 1}.

The proper k-faces are obtained by choosing k + 1 coordinates, and a sign for each of them, so

fk(C
∗
d) = 2k+1

(
d

k + 1

)
for k < d, while fd = 1. In particular, the d-crosspolytope has 3d non-empty faces. And
indeed, this is the polar dual of the d-cube, so in particular it has the same number of faces. The
d-crosspolytope is simplicial. Its symmetry group is again the hyperoctahedral group.

2Compare Problem Sheet 2 (Problem 2).
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End of class on November 19

Exercise 3.6 (The Half-cube). Let

Hd := conv{x ∈ {0, 1}d : x1 + · · ·+ xd ∈ 2Z}

be the dth half-cube.
(i) Describe Hd for d ≤ 4.

(ii) Describe the facets of Hd: How many are they, what are their combinatorial types?
(The cases d = 1, 2, 3 need to be argued separately.)

(iii) Give anH-representation of Hd.
(The cases d = 1, 2, 3 need to be argued separately.)

(iv) Show that Hd is “3-simplicial,” that is, all its 3-faces are tetrahedra.
(v) Show that Hd is simplicial for d ≤ 4, but not for d > 4.

3.1.2 Some basic constructions

Proposition 3.7 (Product3). Let P ⊂ Rd and Q ⊂ Re be polytopes, then the product

P ×Q ⊂ Rd+e

is a polytope of dimension dim(P )+dim(Q). Its non-empty faces are the products of non-empty
faces of P and of Q. Thus the product construction is combinatorial: the face lattice of P ×Q
can be derived from the face lattices of P and of Q. In particular,

fk(P ×Q) =
k∑
i=0

fi(P )fk−i(Q) for k ≥ 0.

P ×Q is simple if and only if P and Q are simple.
P×Q is never simplial, unless one of P andQ is 0-dimensional, or they are both 1-dimensional
(and P ×Q is a quadrilateral).

Example 3.8 (Prisms). Let P ⊂ Rd be a polytope. If I is an interval (that is, a 1-dimensional
polytope, such as I = [0, 1] or I = [−1, 1]), then the product P × I ⊂ Rd+1 is a prism over P .
Then dim(P × I) = dim(P ) + 1. The non-empty faces of the prism P × I for I = [0, 1] are
• the faces of the base P × {0}, which is isomorphic to P ,
• the faces of the top P × {1}, which is also isomorphic to P ,
• the vertical faces of the form P × I , where every non-empty k-face of P corresponds to

a unique vertical (k + 1)-face of P .
This also yields a drawing of the face lattice of P .

Note: the d-cube, d > 0, is an iterated prism.

Exercise 3.9. Define the f -polynomial of a d-polytope as

fP (t) := 1 + f0t+ f1t
2 + · · ·+ fd−1t

d + td+1.

3Compare Problem Sheet 2 (Problem 1).
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(a) Describe the f -polynomial fP×I of the prism P × I in terms of the f -polynomial of P .
Deduce from this a formula for the f -polynomial of the d-cube.

(b) Describe the f -polynomial of P ∗ in terms of the polynomial of P . Deduce from this a
formula for the f -polynomial of the d-crosspolytope.

(c) Describe the f -polynomial of P ×Q in terms of the polynomials of P and of Q.

Proposition 3.10 (Direct sum4). Let P ⊂ Rd and Q ⊂ Re be polytopes with the origin in the
interior, then

P ⊕Q := conv(P × {0} ∪ {0} ×Q) ⊂ Rd+e

is a polytope of dimension dim(P ) + dim(Q).
Its proper faces are all of the form F ∗ G := conv(F × {0} ∪ {0} × G), where F ⊂ P and
G ⊂ Q are proper faces, and dim(F ∗G) = dim(F ) + dim(G) + 1.
In particular the direct sum is combinatorial.

Example 3.11 (Bipyramids). If P is a polytope, then P ⊕ I is a bipyramid over P : It has
dimension dim(P ) + 1, f0(P ) + 2 vertices, 2fdim(P )−1 facets, etc.
For example, the d-crosspolytope is an (iterated) bipyramid.

Proposition 3.12. Product and direct sum are dual constructions: If P ⊂ Rd and Q ⊂ Re are
polytopes with the origin in the interior, then

(P ×Q)∗ = P ∗ ⊕Q∗.

Example 3.13 (A neighborly polytope). The direct sum ∆2⊕∆2 [constructed from two triangles
with the origin in the interior] is neighborly: This is a 4-dimensional polytope with f0 = 6
vertices such that any two vertices are joined by an edge. In particular, f1(∆2 ⊕∆2) =

(
f0
2

)
=(

6
2

)
= 15.

End of class on November 20

Proposition 3.14 (Joins). Let P ⊂ Rd and Q ⊂ Re be polytopes, then the join

P ∗Q := conv
({x0

0

 : x ∈ P
}
∪
{0

y
1

 : y ∈ Q
})
⊂ Rd+e+1

is a polytope of dimension dim(P ) + dim(Q) + 1.
Its faces are the joins of the faces of P and the faces of Q. Thus the join construction is
combinatorial: the face lattice of P ∗Q can be derived from the face lattices of P and of Q —
it is simply the product,

L(P ∗Q) ∼= L(P )× L(Q).

In particular,
fk(P ∗Q) =

∑
i

fi(P )fk−i−1(Q) for all k.

P ∗ Q is neither simple nor simplicial, except if both P and Q are simplices, or if one them is
empty and the other one is simple resp. simplicial.

4Compare Problem Sheet 5 (Problem 1).
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Example 3.15 (Pyramids). P ∗ {v} is the pyramid over P .

Remark 3.16. We are usually interested in polytopes only up to affine transformations. Thus we
perform constructions such as products, direct sums, and joins in more generality than the one
indicated above. Also, often P and Q lie in the same higher-dimensional vector space, and we
want to see their product/join/direct sum in the same space:
• If P,Q lie in transversal affine subspaces of a real vectorspace V ∼= RN , e.g. P ⊂ V ′,
Q ⊂ V ′′, V ′ ∩ V ′′ = {p}, then

{x+ y : x ∈ P, y ∈ Q}

is (affinely equivalent to) the product of P and Q.
• If P,Q lie in transversal affine subspaces V ′ resp. V ′′ of V , where V ′ ∩ V ′′ is a relative

interior point of P and of Q, then
conv(P ∪Q)

is (affinely equivalent to) the direct sum of P and Q.
• If P,Q lie in skew subspaces of V , then

conv(P ∪Q)

is (affinely equivalent to) the join of P and Q.

Proof. . . . left as an exercise. It helps to know the definitions, e.g. the following . . .

Definition (Reminder from Lemma 2.40: Affine equivalence, a.k.a. affinely isomorphic). Affine
maps between vector spaces V and W are maps that satisfy f(λx + (1− λ)y = λf(x) + (1−
λ)f(y); they have the form f(x) = Ax+ b for a suitable matrix A and vector b.
Two polytopes P ⊂ V and Q ⊂ W are affinely equivalent if there is an affine map f : V → W
such that f(P ) = Q, where f : P → Q is a bijection. (Note that this does not require that
f : V → W is a bijection – f does not need to be injective or surjective.)
Affine equivalence is an equivalence relation. In particular, affinely equivalent polytopes are
combinatorially equivalent (for this, recall Lemma 2.40.)

Exercise 3.17. Show that the join construction is self-dual,

(P ∗Q)∗ ∼= (P ∗ ∗Q∗).

How do you have to interpret/adapt the notations/constructions to make this true?

Exercise 3.18. In Rd, what is the smallest example of a polytope that is not (combinatorially
equivalent to) a join, a product or a direct sum? After you have answered that: How did you
interpret “smallest”?

Example 3.19 (The Hanner polytopes/The 3d conjecture). The Hanner polytopes are defined as
all polytopes that can be generated from [−1,+1] by repeatedly applying products, direct sums,
and polarity. This includes the d-dimensional cube and the d-dimensional cross polytope, but
many more polytopes. (For example, a prism over an octahedron.)
All d-dimensional Hanner polytopes are centrally symmetric, and they have exactly 3d+1 faces
(equivalently: 3d non-empty faces; equivalently: 3d proper faces).
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The 3d Conjecture (by Gil Kalai, 1988 [14]) says that every centrally-symmetric d-polytope has
at least 3d + 1 faces, and that in the case of equality it is (equivalent to) a Hanner polytope.
Up to now, this is proved only for d ≤ 4; see Sanyal, Werner & Ziegler [20].

End of class on November 26

3.1.3 Stacking, and stacked polytopes

Definition 3.20 (Stacking). Let P be a polytope and F a facet. Stacking a pyramid onto a
facet F yields a polytope

P ′ := conv(P ∪ {v0}) = P ∪ conv(F ∪ {v0})

with a new vertex v0 such that all such that all proper faces of P , except for F , are also facets
of conv(P ∪ {v0})

Lemma 3.21. Let P be a d-polytope, and F ⊂ P a facet.
The proper faces of P ′ := Stack(P, F ) are
– all proper faces of P , except for F , and
– the pyramids conv(G ∪ v0), for all proper faces G ⊂ F .
The f -vector of P ′ is hence

fi(P
′) =

{
fi(P ) + fi−1(F ) for i < d− 1

fd−1(P ) + fd−2(F )− 1 for i = d− 1.

Definition 3.22 (Beneath/beyond). Let P ⊂ Rd be a d-polytope, and F ⊂ P a facet.
A point v /∈ P lies beneath the facet F if v and the interior of P lie on the same side of the
hyperplane HF spanned by F .
A point v /∈ P lies beyond the facet F if v and the interior of P lie on different sides of the
hyperplane HF spanned by F .

Thus “stacking onto a facet F ” describes the situation when a new point/vertex lies beyond one
particular facet F ⊂ P and beneath all other facets of P .

Exercise 3.23. Let P ⊂ Rd be a d-polytope, and F ⊂ P a facet. Let v1, . . . , vn be the vertices
of P , and assume that v1, . . . , vm for some m < n are the vertices of F .
Show that

(1− λ) 1
n
(v1 + · · ·+ vn) + λ 1

m
(v1 + · · ·+ vm)

– for λ = 0 is a point in the interior of P ,
– for λ = 1 is a point in the relative interior of F ,
– for λ > 1 is a point beyond F , which lies beneath all other facets of P if λ is small enough

(but larger than 1).

Definition 3.24. A d-dimensional stacked polytope Stackd(d + 1 + n) on d + 1 + n vertices,
for n ≥ 0, is obtained from a d-simplex ∆d ⊂ Rd by repeating the operation “stacking onto a
facet” n times.
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Exercise 3.25. Show that for d ≥ 3 and sufficiently large n, there are different combinatorial
types of stacked d-polytopes on d+ 1 + n vertices.
Discuss how the combinatorial type of Stackd(d+ 1 + n) can be described in terms of a (graph
theoretical) tree. Do different trees describe different polytopes? Do different stacked polytopes
have different trees?
Use this to estimate the number of different stacked polytopes Stackd(d+ 1 +n) for some fixed
d ≥ 3 and large n.

Proposition 3.26. The f -vector of Stackd(d+ 1 + n) is

fi(Stackd(d+ 1 + n)) =

{(
d+1
i+1

)
+ n
(
d
i

)
for i < d− 1

d+ 1 + n(d− 1) for i = d− 1.

Exercise 3.27. Compute and sketch the f -vector of the stacked polytope Stack10(42). In par-
ticular, how many facets does it have? Which is the largest entry of the f -vector?

Proposition 3.28. The stacked polytope Stack3(8) obtained by stacking onto all 4 facets of a
tetrahedron cannot be realized with all vertices on a sphere, so it is not inscribable.

Proof. Stereographic projection from a tetrahedron vertex, and then an angle count in the re-
sulting Delaunay triangulation. See Gonska & Ziegler [11]. (Delaunay triangulations will be
discussed later.)

End of class on November 27

3.1.4 Cyclic polytopes

Definition 3.29 (The moment curve). The moment curve in Rd is the monomial curve

γ : R −→ Rd, t→ (t, t2, . . . , td)T .

For d = 2, this yields the standard parabola.

Lemma 3.30. The moment curve has degree d: Every hyperplane in Rd cuts the moment curve
in at most d points.
(Hyperplanes cutting the curve in exactly d points exist.)

Proof 1. If the hyperplane is given by a1x1 + · · · + adxd = −a0, where one of the ai (i ≥ 1)
is not zero, then the intersection points are exactly the roots of the non-constant (!) polynomial
a0 + a1t+ · · ·+ adt

d.

Proof 2. Any d+1 points on the curve span a d-simplex: Indeed, the corresponding determinant
(which computes the volume of the simplex) is a Vandermonde determinant.

Definition 3.31 (Cyclic polytopes). Let n > d > 1 and t1 < · · · < tn. The cyclic polytope
Cd(t1, . . . , tn) is defined as the convex hull of n points on the moment curve:

Cd(t1, . . . , tn) := conv{γ(t1), . . . , γ(tn)}.
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For example, C2(t1, . . . , tn) is the convex hull of n points on the standard parabola.

Lemma 3.32. For any n > d ≥ 2 and t1 < · · · < tn the cyclic polytope Cd(t1, . . . , tn) is
d-dimensional, simplicial, with n vertices.

Proof. It is d-dimensional since any d + 1 of the points γ(ti) are affinely independent. For
the same reason it is simplicial. That each point γ(ti) defines a vertex can be seen from the
projection to the first two coordinates, which yields C2(t1, . . . , tn).

Definition 3.33 (Neighborly). A d-polytope is called k-neighborly if any k vertices form the
vertices of a (k − 1)-face. The bd/2c-neighborly polytopes are simply called neighborly.

Proposition 3.34. The cyclic polytopes are neighborly.
In particular, any two vertices ofC4(n) are joined by an edge (1-face), soC4(n) has a “complete
graph”.

Proof. A hyperplane a0 + a1x1 + · · ·+ adxd = 0 is a supporting hyperplane for Cd(t1, . . . , tn)
if and only if the polynomial f(t) = a0 + a1t + · · · + adt

d = 0 vanishes at some of the ti’s
and has always the same sign at the others. Besides, conv{γ(ti) | f(ti) = 0} is then a face of
Cd(t1, . . . , tn).
Let I ⊂ {1, . . . , n} be such that |I| ≤ bd/2c. Then the polynomial f(t) :=

∏
i∈I(t − ti)

2

vanishes at ti for i ∈ I , is positive on tj for j /∈ I , and has deg f ≤ n. Thus it yields us a
supporting hyperplane through all of γ(ti) with i ∈ I .

Exercise 3.35. Prove that any (bd/2c+ 1)-neighborly polytope is a simplex.
Hint: Use Radon’s lemma.

Remark 3.36. There are neighborly non-cyclic polytopes (combinatorially different from any
cyclic polytope). In dimension 4, the smallest examples have 8 vertices.

Convince yourself that a cyclic 3-polytope looks like this:

γ(t1)

γ(t2)

γ(t3)
γ(t4)

γ(t5)

γ(t6)

Proposition 3.37 (Gale’s evenness criterion). The facets of a cyclic polytope Cd(t1, . . . , tn) are
given by the simplices F ({i1, . . . , id}) = conv{γ(ti1), . . . , γ(tid)} such that I = {i1, . . . , id}
has the following evenness property: For any two i, j taken from {1, . . . , n} that do not lie in I ,
there is an even number of ik lying between them.

For example, the facets of C3(6), as depicted above, are 123, 134, 145, 156, 126, 236, 346, 456.
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Proof. By Lemma 3.30, the points γ(ti1), . . . , γ(tid) span a hyperplane H , and the moment
curve passes not only touches, but passes through the hyperplane H at each of the points. Thus
the evenness condition exactly guarantees that all other points γ(ti), γ(tj) lie on the same side
of H .

Corollary 3.38. The construction of the cyclic polytopes in Definition 3.31 is combinatorial,
that is, the combinatorial type of Cd(t1, . . . , tn) does not depend on the specific values of
t1, . . . , tn, but only on the parameters d and n. This justifies the notation Cd(n) for the combi-
natorial type of Cd(t1, . . . , tn)

Exercise 3.39. Show thatCd(d+1) is a d-simplex, andCd(d+2) is a direct sum ∆dd/2e⊕∆bd/2c.

Proposition 3.40. The number of facets of Cd(n) is

fd−1(Cd(n)) =

{(
n−e
e

)
+
(
n−e−1
e−1

)
if d = 2e,

2
(
n−1−e

e

)
if d = 2e+ 1.

Proof. Here is a different interpretation of the index set of a facet: It consists of bd/2c disjoint
pairs {i, i+ 1}, plus possibly the singletons 1 or n.
Indeed, the decomposition into pairs and singletons is unique. Each facet includes exactly one
of the singletons if d is odd, and both or none of them if d is even.
Now a simple bijection (remove the second entry from each pair, and renumber) shows that
each of the singleton cases can be counted by a simple binomial coefficient:
d = 2e even, no singleton:

(
n−e
e

)
facets.

d = 2e even, both singletons:
(
(n−2)−(e−1)

e−1

)
facets.

d = 2e+ 1, singleton n:
(
n−1−e

e

)
facets.

Example 3.41. The facets of C4(8) are
1234, 1245, 1256, 1267, 1278, 2345, 2356, 2367, 2378, 3456, 3467, 3478, 4567, 4578, 5678,
1238, 1348, 1458, 1568, 1678.
Note that this is 20 facets: more than the 16 facets of the 4-dimensional cross polytope, which
is also simplicial and has the same number of vertices.

Exercise 3.42. Find (in the literature, or by figuring it out) a formula for all the f -numbers
fk(Cd(n)). Use it to compute and sketch the f -vector of the cyclic polytope C10(42). In partic-
ular, how many facets does it have? Which is the largest entry of the f -vector?

End of class on December 2

Exercise 3.43. Show that for n > d > 1 the following are equivalent:
(i) Cd(n) has a simple vertex (i.e., a vertex that is contained in exactly d facets),

(ii) Cd(n) is a stacked polytope,
(iii) d ≤ 3 or n ≤ d+ 2.
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3.1.5 A quote

The whole is greater than the part, but it is also greater than the sum of its parts.
There is no need, then, to be overly obsessed with limited and particular questions.
We constantly have to broaden our horizons and see the greater good which will
benefit us all. [. . . ]

Here our model is not the sphere, which is no greater than its parts, where every
point is equidistant from the centre, and there are no differences between them.
Instead, it is the polyhedron, which reflects the convergence of all its parts, each
of which preserves its distinctiveness. Pastoral and political activity alike seek to
gather in this polyhedron the best of each. There is a place for the poor and their
culture, their aspirations and their potential. Even people who can be considered
dubious on account of their errors have something to offer which must not be over-
looked. It is the convergence of peoples who, within the universal order, maintain
their own individuality; it is the sum total of persons within a society which pursues
the common good, which truly has a place for everyone.

(Pope Francis, November 2013 [17])

3.1.6 Combinatorial optimization and 0/1-Polytopes

Why 0/1-polytopes are interesting, important, remarkable, complicated.

Definition 3.44 (0/1-polytopes). A 0/1-polytope is subpolytope of the 0/1-cube, that is,

P = conv(V ) for some V ⊆ {0, 1}d.

For many purposes, we may assume that the 0/1-polytopes we consider are full-dimensional.
Indeed, if a polytope is not full-dimensional, then it satisfies an equation ax = α with some
ai 6= 0, and then we may project by deleting the xi-coordinate. Repeat as necessary.

Examples 3.45.
(i) The d-cube conv({0, 1}d) = [0, 1]d is a 0/1-polytope: dimension d, 2d facets, 2d vertices.

(ii) The d-simplex ∆d = conv({0, e1, . . . , ed}) is a 0/1-polytope: dimension d, d + 1 facets,
d+ 1 vertices.

(iii) The convex hull conv({e1, . . . , ed, 1 − e1, . . . , 1 − ed}) is a (non-regular) d-dimensional
cross polytope: dimension d, 2d vertices, 2d facets.

(iv) The Birkhoff polytope Bn is the set of all matrices of size n×n with non-negative entries
and row and column sums 1. For n ≥ 2 has dimension d = (n − 1)2, d2 facets given by
xi,j ≥ 0, and d! vertices, the permutation matrices. (There was an exercise on this.)

(v) The correllation polytope is COR(n) = conv{xxT : x ∈ {0, 1}n}. It is very interesting
(and complicated), with huge numbers of facets (though there is no formal proof for large
n).

Lemma 3.46. The volume of any d-dimensional 0/1-polytope is an integer multiple of 1
d!

Proof. Any d-dimensional polytope can be triangulated without new vertices. (This will is not
hard to do recursively, but will be discussed in more detail later.) Thus we have to discuss
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only the case of a simplex. By symmetry, we may assume that 0 is a vertex, so the simplex
is conv({0, a1, . . . , ad). Its volume is 1

d
det(a1, . . . , ad), where A = (a1, . . . , ad) is an integer

matrix (indeed, a 0/1-matrix). The determinant of an integer matrix is an integer.

Lemma 3.47 (Hadamard bound for 0/1-matrices). The determinant of a 0/1-matrixA ∈ {0, 1}d
is bounded by

| det(A)| ≤ (d+ 1)(d+1)/2

2d

Equality occurs whenever the simplex conv({0, a1, . . . , ad}) is regular, and there is an (d+1)×
(d+ 1) Hadamard matrix.

Proof. From A, we build a matrix

A′ =

(
1 1T

0 2A

)
of size (d+ 1)× (d+ 1) with det(A′) = 2d det(A). Now subtract the first row from all others:
This yields A′′ ∈ {−1, 1}(d+1)×(d+1) with det(A′′) = det(A).
Now apply the Hadamard bound: The columns of this matrix all have length

√
d+ 1, so

det(A′′) ≤ (d+ 1)(d+1)/2.

By definition, a d-dimensional 0/1-polytope has at most 2d vertices.

Lemma 3.48 (Bárány’s upper bound, easy version). A d-dimensional 0/1-polytope has not more
than d! + 2d facets.

Proof. Indeed, fd−1 ≤ 2d+ d!(1− vold(P )).
The claim is true for the d-cube Cd. For any other d-dimensional 0/1-polytope conv(V ), add a
0/1-vertex, to get P ′ = conv(V ∪ v0). For any facet that is destroyed by going from P to P ′, a
pyramid of volume at least 1

d!
is added. Thus

vold(P
′)− vold(P ) ≥ 1

d!
(fd−1(P )− fd−1(P ′)).

Now use induction on the number of missing vertices, or compare the telescope sums for
fd−1(P )− fd−1(Cd) and for vold(Cd)− vold(P ).

End of class on December 3

Theorem 3.49 (Bárány–Pór [2], Gatzouras, Giannopoulos & Markoulakis [10]). A d-dimensional
0/1-polytope for large n can have a superexponential number of facets: For some c > 0 there
are d-dimensional 0/1-polytopes Pd with

fd−1 ≥
( cd

log2 d

)d/2
.

Theorem 3.50 (Alon & Vũ [1]; see also [26]). Further remarkable facts:
(i) Large coefficients: The largest coefficient in the facet-description of a d-dimensional 0/1-

polytope satisfies
(d− 1)(d−1)/2

22d+o(d)
≤ c(d) ≤ dd/2

2d−1
.
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(ii) Flat simplices: The smallest distance of a vertex from a facet it does not lie on in a d-
dimensional 0/1-polytope satisfies

2d−1
√
d
d+1
≤ s(d) ≤ 22d

√
d
d
2o(d).

For example (“large coefficients”),there is a 8-dimensional 0/1-simplex with a facet given by

12x1 + 18x2 + 3x3 + x4 − 10x5 + 11x6 − 4x7 + 5x8 ≤ 19.

Exercise 3.51 (The “cube slice polytopes”). For 1 ≤ k ≤ d let

∆d−1(k) := {x ∈ [0, 1]d : x1 + · · ·+ xd = k}
= conv{x ∈ {0, 1}d : x1 + · · ·+ xd = k}.

(i) Show that ∆d−1(k) is affinely equivalent to

∆′d−1(k) := {x ∈ [0, 1]d−1 : k − 1 ≤ x1 + · · ·+ xd−1 ≤ k}
= conv{x ∈ {0, 1}d−1 : k − 1 ≤ x1 + · · ·+ xd−1 ≤ k}.

(ii) Describe ∆3(2).
(iii) Study how the hyperplane Hk = {x ∈ Rd : x1 + · · · + xd = k} cuts the faces of the

d-cube [0, 1]d. How do the resulting faces look like? Conversely, describe how the faces
of ∆d−1(k) arise from faces of [0, 1]d. (Hint: Distinguish vertices and higher dimensional
faces!)

(iv) Show that the H-description and the V-description in the definition of ∆d−1(k) give the
same (d− 1)-polytope.

(v) Show that ∆d−1(k) and ∆d−1(d− k) are combinatorially equivalent.
(vi) Show that for even d, ∆d−1(

d
2
) is centrally symmetric, i.e. there is a center point c such

that for all x ∈ Rd, c+ x ∈ ∆d−1(
d
2
) if and only if c− x ∈ ∆d−1(

d
2
).

(vii) Show that ∆d−1(1) and ∆d−1(d− 1) are simplices.
(viii) Show that for 1 < k < d− 1, ∆d−1(k) has 2d facets. What are their combinatorial types?

In particular, there are two different combinatorial types, except in the case k = d
2
.

(ix) Show that ∆d−1(k) is 2-simplicial and (d− 2)-simple.
(x) Describe ∆4(2): compute the f -vector, describe the facets.

(xi)* Show that the f -vector of ∆d−1(k) is given by

fi−1(∆d−1(k)) =
∣∣{[d] = A ]B ] C : |A| < k, |B| < d− k, |C| = i}

∣∣
=

∑
0≤s<k
k<s+i≤d

(
d

s

)(
d− s
i

)

=
∑

max{−1,k−i}<s<min{k,d−i+1}

d!

s!i!(d− s− i)!

for i > 1. How about f0?
(Hint: Every i-face of [0, 1]d can be described in the form

{x ∈ Rd : xj = 1 for j ∈ A, xj = 0 for j ∈ A, 0 ≤ xj ≤ 1 for j ∈ C},

for suitable sets A,B,C satisfying A ]B ] C = [d] and |C| = i.)
(xii) Compute and plot the f -vector of ∆41(21).
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3.2 Three-dimensional polytopes

3.2.1 The graph

Definition 3.52 (The graph of a polytope). The graph G(P ) of a polytope P is the “abstract”
graph which has a vertex (“node”) for each vertex (“0-face”) of the polytope and an edge (“arc”)
for each edge (“1-face”) of the polytope.

What can we say about the graphs of polytopes? Of 3-polytopes? Here are a first few observa-
tions:

• The graph of any d-polytopes is finite, and by definition it is a simple graph (i.e., it has
no loops of parallel edges).

• It has at least d+ 1 vertices [This condition is often forgotten!]

• Every vertex of the graph has degree at least d.

• The graph is connected. (This is not quite obvious, will be proved below.)

Proposition 3.53. The graphs of 3-polytopes are planar.

Proof 1. Find an interior point p1 and from this point, project to a sphere centered at p1. Thus
the graph has been drawn on a sphere.

Proof 2. Find a point p0 that is beyond some facet F but beneath all other facets. From this
point, what do you see? Equivalently, from this point project to the facet F .

3.2.2 The graph is 3-connected

The graphs of 3-dimensional polytopes are (vertex) 3-connected.

Definition 3.54. A finite graph is k-connected (a.k.a. vertex k-connected) if it has at least k+ 1
vertices, and any subgraph obtained by deleting at most k − 1 vertices is connected.

Remark 3.55. Menger’s theorem states that a graph is k-connected if between any two (non-
adjacent) vertices there are k paths that are disjoint except for the endpoints.
There is a similar statement for edge-connected graphs, where the paths would have no edge in
common. This notion is not relevant for us here.

Theorem 3.56 (Balinski’s Theorem). The graphs of d-dimensional polytopes are (vertex) d-
connected.

Proof. Induction on dimension, the cases d ≤ 2 are clear.
Let S be a subset of the vertex set of P , with |S| ≤ d− 1, so dim aff(S) ≤ d− 2. Let v0 be any
vertex not in S (that exists), and let H be a hyperplane that contains S ∪ {v0} (that exists).
After a coordinate transformation we may assume that H = {x ∈ Rd : xd = 0}, which allows
us to talk about “above” and “below” the hyperplane (referring to points with xd > 0 resp.
xd < d).
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Case 1: If there are points in H both above and below H , then let F+ and F− be the faces of all
points in P that have the maximal resp. minimal x0. The graphs of F+ and F− are connected.
Now by Lemma 3.57, from every vertex of P that is above H , or that is on H but not in S
(which in particular includes v0), there is an edge upwards, and thus a monotonely-increasing
path in the graph to a vertex in F+ that does not meet S. Similarly, from every vertex of P
that is below H , or that is on H but not in S (which in particular includes v0), there is an edge
downwards, and thus a monotonely-decreasing path in the graph to a vertex in F− that does not
meet S.
Putting all the paths together, we see that G(P ) \ S is connected.
Case 2: If P has only points above H but not below H , then we are already done with the first
half of the argument of Case 1. Similarly if P has only points below H but not above H , then
we only need the second half of the argument of Case 1.

End of class on December 10

Lemma 3.57. Assume that v is a vertex of a convex polytope P ⊂ Rd, which is not the highest
vertex – that is, there is a vertex w that is higher, i.e., whose last coordinate has a higher value,
wd > vd. Then there is some edge starting at v whose second endpoint is higher than v, that is,
an edge [v, w′] with w′d > vd.

Proof. The cone with apex v spanned by the edges of P starting at v contains the whole poly-
tope: This was established when we discussed that the vertices of the vertex figure P/v corre-
spond exactly to the edges of P at v.
Thus if there is no increasing edge at v, then v is maximal.

3.3 The Euler formula and some consequences

Lemma 3.58 (The Euler formula). If any graph with n vertices, e edges, and c connected
components is drawn in the plane, forming m faces (connected components of the complement:
one of them unbounded, all the others bounded), then

n− e+m = 1 + c.

In particular, every 3-polytope satisfies

f0 − f1 + f2 = 2.

Proof. For example by induction on the number of edges, by plainly deleting edges one-by-one:
For a graph without edges, we have c = n and m = 1.
Adding an edge, either creates a new face (if the endpoints of the edge were already connected),
or it reduces the number of connected components (otherwise), but not both.
See Eppstein [8] for twenty (!) proofs.

Corollary 3.59 (The upper bound theorem for 3-polytopes). A 3-polytope with f0 vertices has
at most 3f0 − 6 edges and at most 2f0 − 4 facets.

Proof. Every facet has at least three sides (edges), every edge is on exactly two facets, thus
3f2 ≤ 2f1, with equality if and only if the polytope is simplicial. From this we get . . .
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Corollary 3.60. Every 3-polytope has triangles, quadrilaterals, and/or pentagons as faces.
Indeed, if mk denotes the number 2-faces with k vertices, then every 3-polytope satisfies

3m3 + 2m4 +m5 ≥ 12

with equality if the polytope is simple and does have no faces with more than six sides.

Proof.
f2 = m3 +m4 +m5 + . . .

where
2f1 = 3m3 + 4m4 + 5m5 + 6m6 + . . .

while
3f0 ≤ 2f1.

Also

12 = 6f0 − 6f1 + 6f2 ≤ −2f1 + 6f2 = 3m3 + 2m4 +m5 −m7 − 2m8 − . . .

Remark 3.61. The regular polytopes in R3 can be classified using Euler’s equation.

Exercise 3.62 (The f -vectors of 3-polytopes; Steinitz 1906 [22]). The f -vectors of 3-polytopes
are given by the set

{(f0, f1, f2) ∈ Z3 : f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4.}

3.4 Steinitz’ theorem and three proofs

Theorem 3.63 (“Steinitz’ theorem”, 1910/1922 [23, 24]). There ist a bijection between the iso-
morphism types of 3-connected planar finite graphs and the combinatorial types of 3-dimensional
polytopes, induced by the obvious map P 7→ G(P ).

Proof.
“←−” The graph is 3-connected: by Balinski’s Theorem 3.56

The graph is planar: projection into one face or onto the unit sphere.
The map is one-to-one by Lemma 3.64 below.

“−→” This direction requires that we demonstrate that/how for any 3-connected planar graph
one can get a realization as the graph of a convex 3-polytope. This is non-trivial. In
class/below we provide sketches for three different types of proofs.

Lemma 3.64. The combinatorial type of a 3-polytope is determined by its graph.

Proof. There is a bijection between the vertices of a polytope and the vertices of its graph. The
same holds for the edges. Each 2-face of the polyope can be associated to a non-seperating
simple induced cycle in the graph (and vice versa).

Remark 3.65. This is not true for 4-dimensional polytopes! Consider the following example:
A bipyramid over a tetrahedron (∆3 ⊕ ∆1) and a pyramid over ∆2 ⊕ ∆1 have the same graph
(K6 minus an edge). The first polytope is simplicial while the second is not, hence they are not
of the same type.
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3.4.1 Steinitz type proofs

G = G1 → G2 → · · · → Gn = K4, a sequence of 3-connected planar graphs obtained by small
local operations, translate into a sequence of 3-polytopes P = P1 ← · · · ← Pn = .

Lemma 3.66. Every planar 3-connected graphG has a sequenceG→ G1 → · · · → Gn = K4,
where each operation Gi → Gi+1 is either duality or a ∆-Y-transformation (perhaps better
called a ∇-Y-transformation?). This operation replaces a triangle by the star graph K1,3 (a
tree with one internal vertex and three leaves) and then eliminates vertices of degree 2 that
might have been created in this process (by replacing the two edges incident to such a vertex by
a single edge).

Corollary 3.67. Every combinatorial type of a 3-polytope can be built from a tetrahedron by re-
peatedly taking the polar or cutting off a vertex of degree 3, which realizes a Y-∇-transformation.

Corollary 3.68 (Barnette & Grünbaum 1970). For a 3-polytope, one can prescribe the shape
of a face.

Corollary 3.69 (Steinitz). Every planar 3-connected graph can be realized as a polytope with
integer coordinates.

For details of such a proof, see [25, Lecture 4].

3.4.2 Tutte’s rubber band embeddings

Let G be a planar 3-connected graph. We may assume that G has a triangle face.

Lemma 3.70. If G is 3-connected and planar, then either G or G∗ has a triangle face.

Proof. If not, then every face of G has ≥ 4 edges and every vertex has degree ≥ 4. By Euler’s
formula, this cannot happen.

Now fix the vertices of the triangle face in the plane, and for all other vertices take the coordi-
nates that minimize the following energy function

E :
∑
ij∈E

1
2

(
(xi − xj)2 + (yi − yj)2

)
= min

⇔
∑
ij∈E

(xi − xj)2 = min and
∑
ij∈E

(yi − yj)2 = min

which is interpreted as minimizing the energy of individual edges realized by (ideal) rubber
bands.
This E(x1, . . . , xn, y1, . . . , yn) is a quadratic function, so finding a minimum means solving a
system of linear inequalities (which is unique, since G is connected). ∇E = 0 yields a correct
layout (i.e., with convex faces that don’t overlap) of G in the plane which can be lifted to R3 to
yield a convex 3-polytope.

Corollary 3.71 (Onn–Sturmfels, Richter-Gebert). If G is 3-connected, planar and has a trian-
gle face, then it can be represented by a polytope with vertex coordinates in {1, 2, . . . , 43n}.

For details of such a proof, see [18, Part IV].
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3.4.3 Circle packing proofs

Theorem 3.72. Every planar 3-connected graphG can be represented as a 3-polytope P which
has all edges tangent to the unit sphere. This representation is unique up to orthogonal trans-
formations if we require that the edge tangency points add to zero.

Proof. Each polytope with those properties gives us two circle packings on the sphere which
intersect orthogonally: the circle packing consisting of facet circles and the circle packing con-
sisting of vertex horizon circles (1). This turns into a planar circle packing by stereographic
projection (2). From this we can construct a planar graph (3) whose faces are quadrilaterals,
called a quad graph, and by taking a subgraph, we obtain the desired planar, 3-connected graph
(4). The reverse four-step-process yields a constructive proof of our statement.

For details of such a proof, see [28, Lecture 1].
End of class on December 17

3.5 Three bits of history
-300: The Finale of the Elements: Euclid and the icosahedron
1498: Mistakes of a Genius: Leonardo and the Herrnhuther Stern
1525: A German Revolution: Dürer’s geometry book from 1525, and his drawing of an ellipse
16??: Descartes finds Euler’s Formula: from Descartes’ lost manuscript, in Leibniz’ copy
2011: Mae West: Geometry in Public – the sculpture at Effnerplatz in Munich
2013: Geometry in Public, II
Further reading: [29]. Merry Xmas!

End of class on December 18
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3.6 Shellability, f -vectors, and the Euler–Poincaré equation

As discussed before the break, the Euler equation for 3-dimensional polytopes was “in essence”
already discovered by Descartes in the 17th century.
The generalization of Euler’s equation for d-dimensional polytopes was first stated in the middle
of the 19th century by the Swiss mathematician Ludwig Schläfli, but his proof was incomplete,
as it assumed that there is a “suitable” ordering on the facets of the polytope, which allows one
to proceed by induction on the number of facets — in modern terms, Schläfli needed, but did
not prove, that polytopes are “shellable.” Schläfli’s proof was completed when Peter Mani and
his student Hans Bruggesser showed in 1969 that, indeed, all polytopes are shellable.
Long before this, the first complete proof of the Euler equation for d-polytopes was provided
by Henri Poincaré around 1900, based on his new “Homology Theory.”

Theorem 3.73 (The Euler–Poincaré formula). For every convex d-dimensional polytope, the
f -vector satisfies

f0 − f1 + · · ·+ (−1)d−1fd−1 = 1− (−1)d.

Examples 3.74. For d = 2 we have f0 − f1 = 0: a polygon has as many sides as vertices;
for d = 3 we have the classical Euler equation f0 − f1 + f2 = 2; for d = 4 we obtain
f0 − f1 + f2 − f3 = 0.

Definition 3.75 (Polytopal complex, pure, dimension, facets). A polytopal complex is a finite
collection of polytopes in some RN that contains all the faces of its polytopes, and such that the
intersection of two polytopes in the collection is a face of both of them.
The dimension of a polytopal complex is the largest dimension of a polytope in the complex.
The polytopes in the complex are referred to as faces of the complex.
A complex is pure if all the inclusion-maximal faces, referred to as facets, have the same di-
mension.

Examples 3.76.
(i) A drawing of a finite graph in the plane with straight edges and without crossings is a

1-dimensional complex (if the graph has at least one edge). It is pure if the graph has no
isolated vertices.

(ii) Any d-polytope (with all its faces) forms a pure polytopal complex C(P ) of dimension d.
(iii) All the proper faces of a d-polytope form a pure polytopal complex of dimension d − 1,

known as the boundary complex C(∂P ) of P .
(iv) If P ⊂ Rd is a convex d-polytope, then the faces of P that are “visible” from some point

x /∈ P form a pure polytopal complex of dimension d− 1.

Definition 3.77 (Shelling/shellable). A k-dimensional pure polytopal complex C is shellable if
either k = 0 (and thus the facets are vertices), or its facets have an ordering F1, F2, . . . , FN ,
called a shelling of C such that

(i) the boundary complex of F1 has a shelling, and
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(ii) for 1 < i ≤ N , the intersection Fi ∩ (F1 ∪ · · · ∪ Fi−1) is a non-empty union of (k − 1)-
dimensional faces of Fi,

Fi ∩ (F1 ∪ · · · ∪ Fi−1) = G1 ∪ · · · ∪G`,

where G1, . . . , G` is a beginning of a shelling order for the boundary complex of Fi.

Examples 3.78.
• A shellable complex of dimension ≥ 1 is connected.
• A 1-dimensional complex (i.e., a graph) is shellable if and only if it is connected.
• A polytope complex C(P ) is shellable if and only if its boundary complex C(∂P ) is

shellable. In this case we say that the polytope is shellable.
• Any ordering of the facets of a d-simplex is a shelling order for the boundary complex.

The last point implies that for simplicial complexes condition (i) in Definition 3.77 is redundant,
and condition (ii) simply says that Fi ∩ (F1 ∪ · · · ∪ Fi−1) is a union of facets of Fi.

Exercise 3.79. How many shellings are there for a convex n-gon?

Exercise 3.80.
(i) How many shellings are there for the (boundary of the) 3-dimensional cube?

(ii) Show (using induction on dimension) that a facet ordering of the d-cube F1, . . . , F2d is
not a shelling if and only if F1, . . . , F2j consists of j pairs of opposite facets, for some j,
1 ≤ j < d.

(iii)* Compute the number of shellings of the d-dimensional cube, for 1 ≤ d ≤ 10.

Proposition 3.81. For every polytope, the reversed order of a shelling is again a shelling order.
That is, if F1, F2, . . . , FN is a shelling order for C(∂P ), then so is FN , FN−1, . . . , F1.

Proof. Induction on dimension d. Let for some 1 < i < N

Fi ∩ (F1 ∪ · · · ∪ Fi−1) = G1 ∪ · · · ∪G`,

where G1, G2, . . . , GM is a shelling order for C(∂Fi). Then we have

Fi ∩ (Fi+1 ∪ · · · ∪ FN) = G`+1 ∪ · · · ∪GM ,

since every facet of Fi is a facet of exactly one other Fj . But GM , GM−1, . . . , G`+1 is, by
induction assumption, a beginning of a shelling order for C(∂Fi).

Theorem 3.82 (Polytopes are shellable; Bruggesser & Mani [7]). Every convex d-polytope is
shellable.

Proof. “Rocket flight” — see [25, proof of Thm. 8.11].

Note that for a Bruggesser–Mani line shelling, the reversal is obtained by simply reversing the
direction on the shelling line.

Remark 3.83. Theorem 3.82 implies that condition (i) in Definition 3.77 is redundant. Shelling
can also be defined for cell complexes, then condition (i) becomes non-trivial.
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The Euler-Poincaré characteristic can be defined for any polytopal complex. Theorem 3.73 says
that χ(C(∂P )) = 1− (−1)d. It can also be restated as

χ(C(P )) = 1

Indeed, χ(C(P )) differs from χ(C(∂P )) by the summand (−1)dfd = (−1)d.

Lemma 3.84. Let C and C ′ be polytopal complexes such that C ∪C ′ is also a polytopal complex.
Then we have

χ(C) + χ(C ′) = χ(C ∪ C ′) + χ(C ∩ C ′)

Proof. Every k-face of χ(C ∪ C ′) is counted as many times at the left as at the right hand side:
(−1)k times if it belongs to only one of the complexes, and 2 · (−1)k times if it belongs to
both.

Remark 3.85. A subcomplex of a polytopal complex C is a subset of the set of faces of C closed
under the operation of taking faces. The union or intersection of two subcomplexes is again
a subcomplex. In particular, F1 ∪ · · · ∪ Fi−1 and Fi ∩ (F1 ∪ · · · ∪ Fi−1) can be viewed as
subcomplexes of C(P ).

Proof of Theorem 3.73. Choose a shelling order F1, . . . , FN of the boundary complex of P
(here N = fd−1). We will prove

χ(F1 ∪ · · · ∪ Fi) =

{
1, for 1 ≤ i < N

1− (−1)d, for i = N

by induction on d and i. Assume that we know this for (d−1)-dimensional polytopes, and look
at what happens when we attach a facet Fi to F1 ∪ · · · ∪ Fi−1. Lemma 3.84 implies

χ(F1 ∪ · · · ∪ Fi) = χ(F1 ∪ · · · ∪ Fi−1) + χ(Fi)− χ(Fi ∩ (F1 ∪ · · · ∪ Fi−1))
= 1 + 1− χ(G1 ∪ · · · ∪G`)

(Here the arguments of χ are understood as polytopal complexes, see Remark 3.85.)
If i < N , then G1 ∪ · · · ∪ G` is a shellable part (but not the whole) of C(∂Fi), hence its Euler
characteristic equals 1 by the induction assumption on d. (This is geometrically clear, and can
be derived from Proposition 3.81.) For i = N we have G1 ∪ · · · ∪G` = ∂FN , which has Euler
characteristic 1 − (−1)d−1 again by the induction assumption. In any case, this yields us the
induction step on i.

Further reading: [25, Sections 8.1 “Shellable and non-shellable complexes” and 8.2 “Polytopes
are shellable”]

End of class on January 7
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3.7 Dehn–Sommerville, Upper Bound Theorem, and the g-Theorem

A simplicial complex is a polytopal complex, all of whose faces are simplices. For example, the
boundary complex of a simplicial d-polytope is a pure (d− 1)-dimensional simplicial complex.

Definition 3.86. Let C be a a pure (d−1)-dimensional simplicial complex, with f -vector f(C) =
(1, f0, . . . , fd−1). Its h-vector h(C) = (1, h1, . . . , hd) is given by

hk :=
k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1,

that is,

hk = fk−1 − (d− k + 1)fk−2 +

(
d− k + 2

2

)
fk−3 − . . .

. . . + (−1)k−1f0

(
d− 1

k − 1

)
+ (−1)k

(
d

k

)
.

In particular, we have h0 = 1, h1 = f0 − d, and

hd = fd−1 − fd−2 + fd−3 − . . . + (−1)d−1f0 + (−1)d.

Also, it is easy to verify h0 + h1 + · · ·+ hd = fd−1

Example 3.87. For the octahedron, we compute f(P ) = (1, 6, 12, 8) and h(P ) = (1, 3, 3, 1).

Remark 3.88. There is a nice trick, “Stanley’s triangles,” to compute the h-vector (see [25,
Examples 8.20]).

Lemma 3.89. The face numbers fk−1 are linear combinations of the h-numbers, with non-
negative (!) integer coefficients:

fk−1 =
k∑
i=0

(
d− i
k − i

)
hi

= hk + (d−k+1)hk−1 + · · ·+
(
d− 1

k − 1

)
h1 +

(
d

k

)
h0.

Proof. We consider the f -polynomial

f(x) := fd−1 + fd−2x+ · · ·+ f0x
d−1 + f−1x

d =
d∑
i=0

fi−1x
d−i

and the h-polynomial

h(x) := hd + hd−1x+ · · ·+ h1x
d−1 + h0x

d =
d∑
i=0

hix
d−i.

From the definition of the h-numbers we find h(x) = f(x−1) and hence f(x) = h(x+ 1).
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For pure simplicial complexes, the definition of shellability simplifies considerably. Condition
(i) from Definition 3.77 is redundant, since the simplex is shellable (as is every polytope).
Moreover, it can be shown that any ordering of the facets of a simplex is a shelling order. Hence
condition (ii) simplifies to
(ii’) For 1 < j ≤ N the intersection of the facet Fj with the union of previous facets is a

non-empty union of facets of Fj:

Fj ∩ (F1 ∪ · · · ∪ Fj−1) = G1 ∪ · · · ∪Gi

Let C be a shellable simplicial complex with a shelling order F1, . . . , FN . We say that the facet
Fj has type i (with respect to this shelling order) if its intersection with the union of previous
facets consists of i facets of Fj . The facet F1 has type 0.

Lemma 3.90. The number of type i facets in a shelling of a pure simplicial complex equals hi.
In particular, it is independent of a choice of a shelling.

Proof. Let Fj have type i. Count the faces that lie in F1 ∪ · · · ∪ Fj but not in F1 ∪ · · · ∪ Fj−1.
Let G1, . . . , Gi be the “old” facets of Fj (those lying in F1 ∪ · · · ∪ Fj−1), and Gi+1, . . . , Gd be
the new ones. Then the intersection

Rj := Gi+1 ∩ · · · ∩Gd

is the unique minimal new face. It has i vertices and hence dimension i − 1. Every other new
face H is characterized by Rj ⊆ H ⊆ Fj , so there are

(
d−i
k−i

)
new faces of that have k vertices,

i.e., dimension k − 1.
Thus every facet of type i adds

(
d−i
k−i

)
to fk−1, so that fk−1 =

∑k
i=0

(
d−i
k−i

)
ti with ti denoting the

number of facets of type i. By comparing this with the formula in Lemma 3.89 we see that
ti = hi.

Corollary 3.91. The h-vector is non-negative for a shellable complex.

Theorem 3.92 (The Dehn–Sommerville equations). For every simplicial d-polytope the h-
vector is symmetric,

hk = hd−k for 0 ≤ k ≤ d.

Proof. Reverse the shelling!

Note that h0 = hd is the Euler-Poincaré formula (for simplicial polytopes).

Theorem 3.93 (The Upper Bound Theorem, McMullen [16]). For any n > d ≥ 1 and 0 ≤ k ≤
d, the cyclic polytope Cd(n) has the maximal number of k-faces among all d-polytopes with n
vertices, that is,

fk(P ) ≤ fk(Cd(n)).

Observe that the claim is quite trivial for k ≤ d
2
, as the cyclic polytopes are neighborly.

Proof. First, we may assume that P is simplicial, since “pulling the vertices (one after the
other)” produces a simplicial polytope while (weakly) increasing the components of the f -
vector.
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Then, a clever induction using carefully chosen Bruggesser–Mani shellings yields that

hk(P ) ≤ hk(Cd(n)) for all k,

which is more than enough, due to Lemma 3.89. During the proof we also find

hk(Cd(n)) =

(
n− d− 1 + k

k

)
for k ≤ bd

2
c

See [16] resp. [25, Sect. 8.4].

Details of the proof:

Definition 3.94. For a simplicial complex C and a vertex v of C, the star star(v, C) of v in C is
the subcomplex consisting of all faces that contain v, and all their faces. The link link(v, C) of
v in C consists of all G ∈ star(v, C) that do not contain v. Thus, the star of a vertex is a cone
over its link.

Lemma 3.95. Let C be a shellable simplicial complex. Then the restriction of any shelling order
of C to star(v, C) is a shelling of star(v, C). It also induces a shelling order for link(v, C).

Proof. After checking this for the star, note that the facets of the link are in a 1-1 correspondence
with the facets of the star.

Lemma 3.96. For every polytope P and every vertex v of P there is a shelling order for C(∂P ),
in which the facets of star(v, C(∂P )) come first.

Proof. There is a generic point outside P , from which only the star of v is visible.

The inequality hk(Cd(n)) ≤
(
n−d−1+k

k

)
is proved by induction on k.

Lemma 3.97. For every shellable pure (d− 1)-dimensional simplicial complex C we have∑
v∈vert(C)

hk(C/v) = (k + 1)hk+1(C) + (d− k)hk(C)

Here we denote by C/v the link of v in C.

Lemma 3.98. Let C = C(∂P ) be the boundary complex of a simplicial polytope. Then we have

hk(C/v) ≤ hk(C) for all v ∈ vert(C),

and the equality holds for all k ≤ l iff P is (l + 1)-neighborly.

Summing up the inequalities of Lemma 3.98 and combining the result with the equation of
Lemma 3.97 yields

(k + 1)hk+1 ≤ (n− d+ k)hk,

which can be used as induction step for hk(Cd(n)) ≤
(
n−d−1+k

k

)
.

Further reading: [25, Sections 8.3 “h-vectors and the Dehn–Sommerville equations” and 8.4
“The Upper bound theorem”].

End of class on January 8
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3.8 Lower bound theorem, g-theorem, the set of all f -vectors

Theorem 3.99 (The Lower Bound Theorem; Barnette 1971/1973). Let P be a simplicial d-
polytope with n vertices, then

fi(P ) ≥ fi(Stackd(n)) =

{(
d+1
i+1

)
+ (n− d− 1)

(
d
i

)
for i < d− 1,

(d+ 1) + (n− d− 1)(d− 1) for i = d− 1,

with equality for all i only if d = 3 or if P is a stacked polytope.

Proof. This is elementary graph theory, using induction etc., see e.g. Brøndsted [6].

Remark: valid also for pseudomanifolds
Remark: not valid for non-simplicial polytopes!

Theorem 3.100 (The g-Theorem; conjectured by McMullen 1971; “sufficiency” of McMullen’s
conditions by Billera & Lee 1980 [3, 4]; “necessity” by Stanley 1980 [21]).
A sequence (1, f0, . . . , fd−1) is the f -vector of a simplicial d-polytope⇐⇒
(1, g1, . . . , gbd/2c) := (h0, h1 − h0, h2 − h1, . . . , hbd/2c − hbd/2c−1) is an M -sequence⇐⇒
1, f0, . . . , fd−1 = gMd for an M -sequence g.
Here

• Md is the Björner matrix

Md :=
(
mjk

)
jk

:=
((d+ 1− j

d+ 1− k

)
−
(

j

d+ 1− k

))
0≤j≤bd/2c, 0≤k≤d

∈ Z(bd/2c+1)×(d+1).

For example, we compute

M1 = (1 2), M2 =

(
1 3 3
0 1 1

)
,

M3 =

(
1 4 6 4
0 1 3 2

)
, M4 =

 1 5 10 10 5
0 1 4 6 3
0 0 1 2 1

.
• An M -sequence is the f -vector of a multicomplex/complex of monomials; it is charac-

terized as follows (a proposition due to Macaulay): (1, g1, . . . , gbd/2c) ∈ Zbd/2c+1 is an
M -sequence if and only

– gi ≥ 0 for all i,
– gk−1 ≥ ∂kgk for all k,

where the “boundary operators” ∂k can be defined as follows: Using the notation
((
n
k

))
:=(

n+k−1
k

)
, we can write every numberm ≥ 0 uniquely as unique expansion of n of the form

m =

((
bk
k

))
+

((
bk−1
k − 1

))
+ . . .+

((
b2
2

))
+

((
b1
1

))
with bk ≥ bk−1 ≥ . . . ≥ b2 ≥ b1 ≥ 0
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and with using the bi’s from this expansion, we set

∂k(m+1) :=

((
bk

k − 1

))
+

((
bk−1
k − 2

))
+ · · ·+

((
b2
1

))
+

((
b1
0

))
.

For example, (1, g1, g2) ∈ Z3 is an M -sequence iff the gi are nonnegative an g1 ≥
(
g2
2

)
— see Problem Sheet 11.

This remarkable theorem — certainly a highlight of modern polytope theory — gives us a
complete combinatorial description of the f -vectors of all simplicial convex polytopes.
A similar description of the set

Fd := {f = (1, f0, . . . , fd−1 : f is the f -vector of a d-dimensional convex polytope }

is out of reach for larger d.
More precisely, F1 and F2 are trivial to work out, while F3 was determined by Steinitz in 1906
— see Exercise 3.62.

Lemma 3.101 (Grünbaum [12]). The affine hull of the set Fd ⊆ Rd+1 has dimension d− 1.

Proof. Indeed, the fact that the first entry of each f -vector is 1 and the Euler–Poincaré equation
together yield that dim(aff(Fd)) ≤ d− 1. The “≥” inequality is left as an exercise.

A good description of the 3-dimensional set F4 seems to be out of reach in the moment. Indeed,
even an approximate description is not in sight. For example (and that seems to be a major
obstacle) it is not at all clear whether the quotient

Φ :=
f1 + f2
f0 + f3

known as fatness of a 4-polytope can be arbitrarily large. See [27].
However, some partial information is available. For example, Grünbaum also proved that

{(f0(P ), f3(P )) : P is a convex 4-polytope }
= {(f0, f3) ∈ Z2 : f3 ≤ 1

2
f0(f0 − 3), f0 ≤ 1

2
f3(f3 − 3), f0 + f3 ≥ 10}

and called this “quite easy.” See [12, p. 292]:

End of class on January 14
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3.9 Graphs of d-polytopes

What do we know about the graphs of d-dimensional polytopes?
The graphs of 2-polytopes are the simple cycles, Cn, n ≥ 3.
The graphs of 3-polytopes are the 3-connected planar graphs (Steinitz’ Theorem 3.63).

Exercise 3.102. Describe the graphs of d-polytopes with d+ 1 or d+ 2 vertices.

We also know, for example, that each graph of a d-polytope contains a subdivision of Kd+1.
Thus, in particular, they are not planar for d ≥ 4.
The graphs of d-polytopes, d ≥ 4, have not been characterized. It seems that a complete answer
is completely out of reach. However, despite some negative results, there are also surprising
positive statements.

3.9.1 The graph of a d-polytope is d-connected; moreover . . .

Balinski’s theorem 3.56 says that the graphs of d-polytopes are d-connected.
However, there are also more subtle connectivity properties, measured by a quantity called
“degree of total separability”:

Theorem 3.103 (Klee 1964, see [12, Sect. 11.4]). By removing at most n vertices, the graph of
a d-polytope can be decomposed into at most the following number of connected components:

s(n, d) ≤


1 for n ≤ d− 1,

2 for n = d,

fd−1(Cd(n)) for n > d.

Proof. For n ≤ d− 1 this follows from Balinski’s theorem, for n = d it also follows from our
proof method for Balinski’s theorem.
For n > d let P be the polytope we consider, and let P ′ := conv(V ′) be the subpolytope given
as the convex hull of the set V ′ of n vertices in the separating set. This P ′ has n vertices. If P ′ is
not full-dimensional, then again the proof method for Balinski’s theorem yields that removing
its vertices from the graph of P results in at most 2 components. Thus we may assume that P ′ is
full-dimensional, so by the upper bound theorem, we get that P ′ has not more than fd−1(Cd(n))
facets.
Now all vertices in V \ V ′ lie beyond some facet of P ′, and the subgraph of G(P ) \ V ′ on the
vertices that lie beyond some particular facet of P ′ is connected (same argument as in the proof
of Balinski’s theorem). Thus G(P ) \ V ′ has at most fd−1(Cd(n)) connected components.

Examples 3.104. G = K6 ∗K10 is not the graph of a d-polytope, for any d: As it is not planar,
d ≤ 3 is excluded. As it is not 7-connected (removing the n = 6 vertices of the K6 decomposes
the graph into 10 components), d ≥ 7 is excluded. Similarly, for d = 6 the removal of the K6

would be allowed to give only 2 components, for d = 5 only 6 components, and for d = 4,
where C4(6) ∼= ∆2 ⊕∆2, only at most f3(C4(6)) = 9 components.
Similarly,G = K6∗K6 is dimensionally unique: If this is the graph of a d-polytope, then d = 4.
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3.9.2 The graph does not determine the combinatorial type, but . . .

Recall the example: ∆3 ⊕ ∆1 and a pyramid over ∆2 ⊕ ∆1 have the same graph (K6 minus
an edge). Even two simplicial polytopes can have the same graph, without having the same
combinatorial type.

Theorem 3.105 (Blind & Mani [5]; Kalai [13]). The combinatorics of a simple polytope is
determined by the graph.

Proof (Sketch). Bruggesser–Mani line shelling orders on the facets of a simplicial polytope
correspond to vertex orderings of the dual polytope, which is simple, by a linear functional.
Given the graph, which orderings are the good ones induced by linear orderings, or (more
generally) the shelling orderings? Well, they are the ones that induce a unique sink on each
non-empty face.
Thus one can look at the quantity

∑
v∈V 2δ

+
O(v), which counts all the non-empty faces — where

the minimum is achieved for the shelling orderings, where each face is counted only once.
Now we characterize the graphs of facets: These are the (d − 1)-connected (d − 1)-regular
subgraphs that are initial in some good vertex ordering.

Only recently, Eric Friedman has shown that the reconstruction can be done efficiently [9].

3.9.3 The graphs can have high diameters, but . . .

Lemma 3.106. If P is a 3-polytope with n facets, then the diameter of the graph is not larger
than b2

3
nc − 1.

Proof. The 3-polytope has at most 2n− 4 vertices, so at most 2n− 6 other than the two we are
trying to connect. So one of the three vertex disjoint paths guaranteed by Balinski’s theorem
uses only at most b1

3
(2n− 6)c of these vertices, so its length is at most b1

3
(2n− 6)c+ 1.

Exercise 3.107. Show that Lemma 3.106 is sharp for all n ≥ 4.

Conjecture 3.108 (“The Hirsch conjecture” – 1957). The maximal diameter of the graph of a
simple d-polytopes with n facets, denoted ∆(d, n), satisfies

∆(d, n) ≤ n− d.

This conjecture is certainly plausible. It was proved in many cases, and also many equivalent
statements. For example, it is equivalent to the claim that between any two vertices of a simple
polytope there is a path that does not “revisit” a facet.
Nevertheless, the Hirsch conjecture is false in high dimensions:

Theorem 3.109 (F. Santos in 2011 [19]). There is a 43-dimensional simple polytope with 86
facets of diameter at least 44.

Santos’ work has been extended: In particular, there are counter-examples for d ≥ 20, according
to Matschke et al. [15].
Nevertheless, we know little about diameters of polytopes: For example, is it true that ∆(n, d)
is bounded by a polynomial in n and d? Is ∆(n, d) ≤ d(n− d)?

End of class on January 15
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4 Combinatorial geometry

4.1 Arrangements of points and lines

Definition 4.1. A (planar) point configuration is a finite subset S ⊂ R2 of the Euclidean plane.

Proposition 4.2 (Sylvester–Gallai 1893/1944). Every finite set of n points in the plane, not all
on a line, n large, defines an “ordinary” line, which contain exactly 2 of the points.

This is one of the “highlights” at the start of this course. The problem was stated by Sylvester
in 1983, a solution by Tibor Gallai [Grünwald] was published by Erdős in 1944. The “BOOK
proof” is due to L. M. Kelly [1]: It considers the smallest distance between a point p0 in the
set S and a line `0 spanned by points in S, and then shows that the line ` is an “ordinary” line,
which contains exactly 2 of the points.
The definitive result is very recent, from 2013:

Theorem/Problem 4.3 (Green–Tao 2012 [3]). There is a number n0 such that for any finite set
of n ≥ n0 points in the plane, not all on a line,
if n is even, then there are at least n/2 “ordinary” lines,
if n is odd, then there are at least 3b1

4
nc ordinary lines.

Remark 4.4. A finite set of points in the plane is “in general position” if no three of the points
lie on a line. However, we might impose stronger conditions, such as that no two points lie on
a vertical line (see below), etc. Thus, “in general position” is redefined as needed.

Theorem 4.5 (Erdős–Szekeres, 1935). For any k ≥ 3 there is a smallest number n(k) such that
any set of n(k) points in the plane in general position contains a subset of k points in convex
position.

We sketch two proofs of this theorem, the first via Ramsey numbers, the second one by induction
using cups and caps.

Lemma 4.6. n(3) = 3; n(4) = 5.

Proof. The first statement is trivial, for the second one we may assume that the convex hull of
the 5 points we consider forms a triangle (otherwise we are done). Then the two points in the
interior together with two vertices of the triangle do it.

Theorem 4.7 (Ramsey). For any k ≥ p ≥ 1 and r ≥ 1 there is a smallest number n = n(k, p, r)
sucht that if we color the p-subsets of an n-set X with r colors, then the p-subsets of some k-
subset Y ⊆ X all get the same color.

Note: The Ramsey numbers n(k, p, r) are typically huge, and very hard to compute or even
estimate. However: n(3, 2, 2) = 6 is the classical statement that among any six people at a
party, three know each other, or three don’t know each other. That is, if you blue/red color the
edges of K6, then there is a monochromatic triangle. For K5 this is wrong.
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Proof 1 of the Erdős–Szekeres theorem. We 2-color the 4-subsets of X by “convex” and “non-
convex.” If |X| ≥ n(k, 4, 2), then by the Ramsey theorem 4.7 either there is a k-subset of
Y ⊆ X all of whose 4-subsets are “convex,” but this implies that Y is in convex position. Or
there is a k-subset of Y ⊆ X all of whose 4-subsets are “non-convex,” but this is impossible for
k ≥ 5 by Lemma 4.6.

Proof 1 of the Erdős–Szekeres theorem. Assume X is in general position, which in this proof
means that no three points lie on a line, and no two span a vertical line (have the same x-
coordinate).
We define a k-cup and an `-cap as a sequence of k resp. ` points from X sorted by increasing
x-coordinate, such that the subsequent slopes increase resp. decrease.
Let f(k, `) be the smallest n such that any n-set in R2 in general position contains a k-cup or
an `-cap.
To prove the theorem it suffices to establish that f(k, `) is finite, as all caps and all cups are in
convex position, so n(k) ≤ f(k, `).
Claim: f(k, `) ≤

(
k+`−4
k−2

)
+ 1.

This is clearly true if k ≤ 2 or ` ≤ 2. Thus we can proceed by induction, assuming that k ≥ 3
and ` ≥ 3, and establishing the following:
Claim: f(k, `) ≤ f(k − 1, `) + f(k, `− 1)− 1.

Now assume that X is a set of size f(k − 1, `) + f(k, `− 1)− 1 without an `-cap.
Let E ⊆ X be the set of points that are not the right endpoints of (k − 1)-caps.
Then X \E does not contain a (k− 1)-cap, so |X \E| ≤ f(k− 1, `)− 1, so |E| ≥ f(k, `− 1).
So either E contains a k-cup, then we are done, or it contains an (`− 1)-cap.
Thus we get a configuration that joins a (k − 1)-cup whose right endpoint is the left endpoint
of an (`− 1)-cap (of points in E). But whenever we in this way connect a (k − 1)-cup with an
(` − 1)-cap, we either get a `-cap, which would contradict our assumption, or we get a k-cap.
So we are done.

Die Abschätzung über “cups” und “caps” aus diesem Bereich ist sogar scharf, aber die Schranke,
die man für n(k) bekommt, trotzdem nicht. Da wissen wir im Moment

2k−2 ≤ n(k) ≤
(

2k − 5

k − 2

)
+ 2 < 4k,

. . . zumindest ist das der Stand von Matoušek 2002, auf dessen Darstellung wir uns hier gestützt
haben [4].

End of class on January 21

4.2 Line arrangements, hyperplane arrangements, and zonotopes

Definition 4.8 (Line arrangement). A line arrangement A is a set of n ≥ 0 distinct lines in R2;
the connected components of its complement A \

⋃
A are called regions (or chambers). Some

of the regions are unbounded, some may be bounded.
The arrangement is called essential if two of the lines intersect, that is, some point in the plane
is an intersection of lines.
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An arrangement is central if all lines are linear subspaces, that is, contain the origin.

Thus a line arrangement is essential and central if and only if
⋂
A = {0}.

Proposition 4.9 (Buck’s theorem). An arrangement of n lines has at most
(
n+1
2

)
+ 1 regions,

with equality if and only if no two lines are parallel and no three of them intersect in a point.

Proof. This is true for n = 0, 1; use induction.

There is a “naive” way to set up duality, where we map each line atx = b to the point 1
b
a, and

the lines through the origin are mapped to the points at infinity, etc. This is avoided by the
following nicer and often more useful version.

Proposition 4.10 (Duality). There is a bijection between

{points in R2} ←→ {non vertical lines in R2}
(p1, p2)

∗←→ {(x, y) ∈ R2 : y = p1x− p2}.

Under this duality, a point on a non-vertical line p ∈ `
is mapped to a non-vertical line though a point, p∗ 3 `∗.
Moreover, if the point p lies above the non-vertical line `,
then the point `∗ lies above the non-vertical line p∗.

Proof. Let the point be (p1, p2) and the line {(x, y) : y = m1x+m2, and compute:

p ∈ ` ⇐⇒ p2 = m1p1 +m2

⇐⇒ −m2 = p1m1 − p2
⇐⇒ (m1,−m2) ∈ {(x, y) ∈ R2 : y = p1x− p2} ⇐⇒ p∗ 3 `∗.

and similarly for

p above ` ⇐⇒ p2 > m1p1 +m2

⇐⇒ −m2 > p1m1 − p2
⇐⇒ (m1,−m2) ∈ {(x, y) ∈ R2 : y > p1x− p2} ⇐⇒ `∗ above p∗.

Exercise 4.11. Dualize Sylvester–Gallai and Erdős–Szekeres theorems.

Exercise 4.12. Generalize Proposition 4.10 to Rd

Definition 4.13 (Hyperplane arrangements). A hyperplane arrangement A is a finite set of
n ≥ 0 distinct affine hyperplanes in Rd, d ≥ 1. The connected components of its complement
A \

⋃
A are called regions (or chambers). Some of the regions are unbounded, some may be

bounded.
The faces of the hyperplane arrangement are the faces of (the closures of its) regions, which are
polyhedra.
The hyperplane arrangement is called essential if some d of the hyperplanes intersect in a single
point, that is, some point in Rd is an intersection of hyperplanes of the arrangement.
A hyperplane arrangement is central if all lines are linear subspaces, that is, contain the origin.
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Lemma 4.14. If we label and orient the hyperplane arrangement, that is, number its hyper-
planes H1, . . . , Hn and choose a “positive side” H+

i for each of them, then this determines a
labelling of the non-empty faces of the hyperplane arrangement by vectors in {+, 0,−}n.

Definition 4.15. For any arrangement A of n hyperplanes in Rd, there is an associated central
arrangement Â of n+1 hyperplanes in Rd+1 obtained as follows. Associate to each hyperplane
Hi = {x ∈ Rd : atix = βi} the linear hyperplane Ĥi := {x ∈ Rd+1 : atix = βixd+1} which can
also be characterized by Hi × {1} ⊂ Ĥi. Then add the extra hyperplane Ĥn := Rd × {0} =
{(x, 0) : x ∈ Rd}.

The central hyperplane arrangement Â in Rd+1 obtained this way has the number of regions of
A. If A is essential, then so is Â. Thus for many purposes this definition (with the extra new
hyperplane) is “the right one.”

End of class on January 22

Definition 4.16. LetA be an essential and central arrangement of n (labeled) hyperplanes in Rd.
The intersection lattice L(A) ⊆ 2A ofA is the set of all intersections of subarrangements ofA,
ordered by reversed (!) inclusion. Its maximal element 1̂ = Rd it interpreted as the intersection
of the empty subarrangement.
The face lattice L(A) is the partially ordered set of all labels X(F ) ∈ {−1, 0, }n associated to
nonempty faces ofA, partially ordered componentwise by “0 < +” and “0 < −”, with an extra
maximal element 1̂ added.

Remark 4.17. For any central arrangement A, the poset L(A) is a is a “geometric” (semimod-
ular, atomic) lattice, thus defines a “matroid.” A popular sport is to read properties (such as the
number of chambers) from L(A) alone. Not treated here.

Proposition 4.18. The face lattice L(A) of any essential central hyperplane arrangement in Rd

is the face lattice of a d-dimensional polytope Z∗(A).

Proof. Let the hyperplanes be H1, . . . , Hn, where Hi = {x ∈ Rd : atix = 0}. Consider the
function

f : Rd → R, f(x) = |at1x|+ |at2x|+ · · ·+ |at1x|.

This function is strictly positive, except in the origin. It is piecewise-linear, convex, and its
domains of linearity are exactly the regions of the arrangement. Thus

Z∗(A) := {x ∈ Rd : |at1x|+ |at2x|+ · · ·+ |at1x| ≤ 1}

is a centrally-symmetric d-polytope that “spans” the arrangement.

Definition 4.19. A zonotope Z ⊂ Rd is a polytope of the form

Z(v1, . . . , vn) := {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ∈ [−1, 1]}
= [−v1, v1] + · · ·+ [−vn, vn]

for a finite set of vectors V = {v1, . . . , vn ∈ Rd}, that is, a Minkowski sum of a collection of
intervals.
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We should assume here that none of the vectors vi is a multiple of another one (minimal repre-
sentation), then the vectors vi are in bijection with the parallel classes of edges of Z(v1, . . . , vn),
known as the zones of the zonotope.
By definition, a zonotope is the linear image (projection image) of the standard cube [−1,+1]n

under the map ei 7→ vi.
One can show that a polytope is a zonotope if the polytope and all its faces are centrally sym-
metric.
Examples include the centrally-symmetric 2n-gons, and the standard n-cube [−1,+1]n.

Proposition 4.20. The polytope Z∗(A) constructed in the proof of Theorem 4.18 is the dual of
the zonotope generated by the unit normal vectors of the hyperplanes of A.

Proof.

Z∗(A) = {x ∈ Rd : |at1x|+ · · ·+ |at1x| ≤ 1}
= {x ∈ Rd : ±at1x± · · · ± at1x ≤ 1 for all signs }
= {x ∈ Rd : λ1a

t
1x+ · · ·+ λna

t
nx ≤ 1 for arbitrary λi ∈ [−1, 1]}

= {x ∈ Rd : (λ1a1 + · · ·+ λnan)tx ≤ 1 for arbitrary λi ∈ [−1, 1]}
= Z(a1, . . . , an)∗.

Theorem 4.21 (Shannon’s theorem [5] [2, pp. 49-50]). Every central arrangement A of n
hyperplanes in Rd+1 has at least 2n simplicial regions.
More precisely, each hyperplane Hi has at least 2(d+ 1) simplicial regions with a facet in Hi.

Proof. Induction on dimension, looking at the affine arrangement that we get by dehomoge-
nizing by an additional “generic hyperplane.” This yields an affine d-dimensional arrangement,
in which each hyperplane is adjacent to a bounded simplicial region, which we again get from
the Sylvester–Gallai–Kelly idea, that is, by looking at a vertex that has smallest distance to the
hyperplane we look at.

End of class on January 28

Definition 4.22 (simplicial arrangement). A central hyperplane arrangement is simplicial if all
its regions are simplicial cones.
An affine arrangement is simplicial if its associated central arrangement is simplicial.

. . . corresponds to simple zonotopes. Example: Cube. More interesting example:

Example 4.23. Permutahedron Πd−1 = Z({ei − ej : i < j}) ⊂ Rd

simple zonotope,
(
d
2

)
zones, given by vectors ei − ej ,

d! vertices, 2d − 2 facets.
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Definition 4.24 (Reflection groups). A finite reflection group is a finite group G ⊂ O(d) that is
generated by reflections (i.e., orthogonal reflections in hyperplanes).
The associated reflection arrangement is the arrangement of all hyperplanes such that the or-
thogonal reflection in H is in the group.

Lemma 4.25. The arrangements of finite reflection groups are simplicial.

Proof. By Shannon’s theorem 4.21, some region is simplicial. On the other hand, all neighbors
of a simplicial region are simplicial, as we see from reflections in its walls.

Definition 4.26. A convex polytope P ⊂ Rd is regular if the group of symmetries is transitive
on the maximal flags, that is, if for any two maximal chain of faces

F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 ⊂ P and F ′0 ⊂ F ′1 ⊂ · · · ⊂ F ′d−1 ⊂ P and

there is an orthogonal transformation that maps Fi to F ′i (and thus in particular P to P , so it is
a symmetry of P ).

Proposition 4.27. The symmetry group of a regular polytope is a reflection group.

The finite reflection groups (in all dimensions) have been classified in the early 20th century,
in the connection of Lie theory. Thus it subsumes the classification of (symmetry groups of)
regular polytopes, achieved by Ludwig Schläfli around 1845.

Theorem 4.28 (Classification of finite reflection groups (and of regular polytopes)!).

Problem. Challenge: Classify simplicial arrangements, at least in dimension 2.
Is it true that there are only the “obvious ones” (some families derived from the regular n-gons,
plus the finite reflection arrangments) and then a finite list of “sporadic” ones?

End of class on January 29
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