Discrete Geometry I

Prof. Günter M. Ziegler

Fachbereich Mathematik und Informatik, FU Rerlin 14195 Berlin
ziegler@math.fu-berlin.de
FU Berlin, Winter term 2013/2014

This is the first in a series of three courses on Discrete Geometry. We will get to know fascinating geometric structures such as configurations of points and lines, hyperplane arrangements, and in particular polytopes and polyhedra, and learn how to handle them using modern methods for computation and visualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at first sight (and some of it is), but it also very quickly touches topics of current research.
For students with an interest in discrete mathematics and geometry, this is the starting point to specialize in discrete geometry. The topics addressed in the course supplement and deepen the understanding of discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology, and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some knowledge of combinatorics and geometry is helpful.

Basic Literature

[1] Satyan L. Devadoss and Joseph O'Rourke. Discrete and Computational Geometry. Princeton University Press, Princeton NJ, 2011.
[2] Jacob E. Goodman and Joseph O'Rourke, editors. Handbook of Discrete and Computational Geometry. Chapman \& Hall/CRC Press, Boca Raton, second edition, 2004.
[3] Peter M. Gruber. Convex and Discrete Geometry, volume 336 of Grundlehren Series. Springer, 2007.
[4] Peter M. Gruber and Jörg Wills, editors. Handbook of Convex Geometry. North-Holland, Amsterdam, 1993. 2 Volumes.
[5] Branko Grünbaum. Convex Polytopes, volume 221 of Graduate Texts in Math. Springer-Verlag, New York, 2003. Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler (original edition: Interscience, London 1967).
[6] Michael Joswig and Thorsten Theobald. Polyhedral and Algebraic Methods in Computational Geometry. Universitext. Springer, 2013.
[7] Jiří Matoušek and Bernd Gärtner. Understanding and Using Linear Programming. Universitext. Springer, 2007.
[8] Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1995. Revised edition, 1998; seventh updated printing 2007.

Contents

0 Introduction 5
1 Some highlights to start with 6
1.1 Point configurations 6
1.2 Polytopes 6
1.3 Sphere configurations/packings/tilings 6
2 Basic structures in discrete geometry 8
2.1 Convex sets, intersections and separation 8
2.1.1 Convex sets 8
2.1.2 Operations on convex sets 8
2.1.3 Convex hulls, Radon's lemma and Helly's theorem 9
2.1.4 Separation theorems and supporting hyperplanes 10
2.2 Polytopes 10
2.2.1 Faces 11
2.2.2 Order theory and the face lattice 13
2.2.3 \mathcal{V}-polytopes and \mathcal{H}-polytopes: The representation theorem 14
2.2.4 Fourier-Motzkin elimination, and the Farkas lemmas 14
2.3 Polyhedral complexes 14
2.4 Subdivisions and triangulations (including Delaunay and Voronoi) 14
2.5 Configurations of points, hyperplanes, and subspaces 14
3 Polytope theory 15
3.1 Examples, examples, examples 15
3.1.1 Regular polytopes, centrally symmetric polytopes 15
3.1.2 Extremal polytopes, cyclic/neighborly polytopes, stacked polytopes 15
3.1.3 Combinatorial optimization and 0/1-Polytopes 15
3.2 The graph, Balinski's Theorem, and the Lower Bound Theorem 15
3.3 Steinitz' Theorem 15
3.4 Graph diameters, and the Hirsch (ex-)conjecture 15
3.5 Polarity, face lattice, simple/simplicial polytopes 15
3.6 Shellability, f-vectors, and the Descartes-Euler-Poincaré equation 15
3.7 Dehn-Sommerville, Upper Bound Theorem, and the g-Theorem 15
4 Combinatorial geometry / Geometric combinatorics 16
4.1 Arrangements of points and lines: Sylvester-Gallai, Erdős-Szekeres 16
4.2 Szemeredi-Trotter 16
4.3 Arrangements of hyperplanes 16
4.4 Regular polytopes and reflection groups 16
4.5 zonotopes and zonotopal tilings 16
4.6 A challenge problem: simplicial line arrangements 16
5 Geometry of linear programming 17
5.1 Linear programs 17
5.2 The simplex algorithm 17
5.3 LP-duality and applications 17
6 Discrete Geometry perspectives 18
A rough schedule, which we will adapt as we move along:

1. 0. Introduction/1. Some highlights to start with 15. October
1. 2. Basic Structures / 2.1 Convex sets, intersections and separation 16. October
1. 2.1.4 Separation theorems; 2.2 Polytopes 22. October
2. 2.2.1 Faces and the face lattice 23. October
3. 2.2.2 \mathcal{V} - and \mathcal{H}-polytopes; Representation theorem 29. October
4. 2.2.3 Fourier-Motzkin elimination, and the Farkas lemmas 30. October
5. 2.3 Polyhedral complexes 2.4 Subdivisions and triangulations [?] 5. November
6. 2.5 Configurations of points, hyperplanes [?] 6. November
7. 3. Polytope theory 12. November
1. 13. November
1. 19. November
2. 20. November
1. 26. November
1. 27. November
15.[?] 3. December
1.
2. December
3. 10. December
1. 11. December
1.
2. December
20.18. December
3. 4. Combinatorial Geometry [?] 7. January
1. [?] 8. January
2. 14. January
3. 15. January
4. 21. January
1. 5. Geometry of linear programming 22. January
1. 28. January
1. 29. January
2. ?? [?] 4. February
3. Exam [?] 5. February
4. 6. Discrete Geometry Perspectives, I 11. February
1. Discrete Geometry Perspectives, II 12. February

0 Introduction

What's the goal?

This is a first course in a large and interesting mathematical domain commonly known as "Discrete Geometry". This spans from very classical topics (such as regular polyhedra - see Euclid's Elements) to very current research topics (Discrete Geometry, Extremal Geometry, Computational Geometry, Convex Geometry) that are also of great industrial importance (for Computer Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in such a way that

- you get an overview of the field of Discrete Geometry and its manifold connections,
- you learn to understand, analyze, visualize, and confidently/competently argue about the basic structures of Discrete Geometry, which includes
- point configurations/hyperplane arrangements,
- frameworks
- subspace arrangements, and
- polytopes and polyhedra,
- you learn to know (and appreciate) the most important results in Discrete Geometry, which includes both simple \& basic as well as striking key results,
- you get to learn and practice important ideas and techniques from Discrete Geometry (many of which are interesting also for other domains of Mathematics), and
- You learn about current research topics and problems treated in Discrete Geometry.

1 Some highlights to start with

1.1 Point configurations

Proposition 1.1 (Sylvester-Gallai 1893/1944). Every finite set of n points in the plane, not all on a line, n large, defines an "ordinary" line, which contain exactly 2 of the points.

The "BOOK proof" for this result is due to L. M. Kelly [1].
Theorem/Problem 1.2 (Green-Tao 2012 [4]). Every finite set of n points in the plane, not all on a line, n large, defines at least $n / 2$ "ordinary" lines, which contain exactly 2 of the points. How large does n have to be for this to be true? $n>13$?

Theorem/Problem 1.3 (Blagojevic-Matschke-Ziegler 2009 [2]). For $d \geq 1$ and a prime r, any $(r-1)(d+1)+1$ colored points in \mathbb{R}^{d}, where no r points have the same color, can be partitioned into r "rainbow" subsets, in which no 2 points have the same color, such that the convex hulls of the r blocks have a point in common.
Is this also true if r is not a prime? How about $d=2$ and $r=4, c f .[6]$?

1.2 Polytopes

Theorem 1.4 (Schläfli 1852). The complete classification of regular polytopes in \mathbb{R}^{d} :

- d-simplex $(d \geq 1)$
- the regular n-gon $(d=2, n \geq 3)$
- d-cube and d-crosspolytope $(d \geq 2)$
- icosahedron and dodecahedron $(d=3)$
-24 -cell ($d=4$)
- 120-cell and $600-$ cell $(d=4)$

Theorem/Problem 1.5 (Santos 2012 [9]). There is a simple polytope of dimension $d=43$ and $n=86$ facets, whose graph diameter is not, as conjectured by Hirsch (1957), at most 43.
What is the largest possible graph diameter for a d-dimensional polytope with n facets? Is it a polynomial function of n ?

1.3 Sphere configurations/packings/tilings

Theorem/Problem 1.6 (see [8]). For $d \geq 2$, the kissing number κ_{d} denotes the maximal number of non-overlapping unit spheres that can simultaneously touch ("kiss") a given unit sphere in \mathbb{R}^{d}.
$d=2: \kappa_{2}=6$, "hexagon configuration", unique
$d=3: \kappa_{3}=12$, "dodecahedron configuration", not unique
$d=4: \kappa_{4}=24$ (Musin 2008 [7]) "24-cell", unique?
$d=8: \kappa_{8}=240, E_{8}$ lattice, unique?
$d=24: \kappa_{24}=196560$, "Leech lattice", unique?

Theorem/Problem 1.7 (Engel 1980 [3] [5] [10]). There is a stereohedron (that is, a 3-dimensional polytope whose congruent copies tile \mathbb{R}^{3}) with 38 facets. But is the maximal number of facets of a stereohedron in \mathbb{R}^{3} bounded at all?
[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Heidelberg Berlin, fourth edition, 2009.
[2] Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler. Optimal bounds for the colored Tverberg problem. Preprint, October 2009, 10 pages; revised November 2009, 11 pages; J. European Math. Soc., to appear; http://arXiv.org/abs/0910.4987.
[3] Peter Engel. Über Wirkungsbereichsteilungen von kubischer Symmetrie. Zeitschrift f. Kristallographie, 154:199-215, 1981.
[4] Ben Green and Terence Tao. On sets defining few ordinary lines. Preprint, August 2012, 72 pages, http://arxiv.org/abs/1208.4714.
[5] Branko Grünbaum and Geoffrey C. Shephard. Tilings with congruent tiles. Bulletin Amer. Math. Soc., 3:951-973, 1980.
[6] Benjamin Matschke and Günter M. Ziegler. Die Rätselseite: Zehn bunte Punkte in der Ebene. Mitteilungen der DMV, 18(3):171, 2010. http://page.math.tu-berlin.de/~mdmv/ archive/18/mdmv-18-3-171.pdf.
[7] Oleg R. Musin. The kissing number in four dimensions. Annals of Mathematics, 168:1-32, 2008.
[8] Florian Pfender and Günter M. Ziegler. Kissing numbers, sphere packings, and some unexpected proofs. Notices of the AMS, 51(8):873-883, September 2004.
[9] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Math., 176:383-412, 2012.
[10] Moritz Schmitt and Günter M. Ziegler. Ten problems. In M. Senechal, editor, Shaping Space. Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, pages 279-289 and 315319. Springer, New York, 2013.

2 Basic structures in discrete geometry

2.1 Convex sets, intersections and separation

2.1.1 Convex sets

Geometry in \mathbb{R}^{d} (or in any finite-dimensional vector space over a real closed field ...)
Definition 2.1 (Convex set). A set $S \subseteq \mathbb{R}^{d}$ is convex if $\lambda p+\mu q \in S$ for all $p, q \in S, \lambda, \mu \in \mathbb{R}_{\geq 0}$, $\lambda+\mu=1$.
Lemma 2.2. $S \subseteq \mathbb{R}^{d}$ is convex if and only if $\sum_{i=1}^{k} \lambda_{i} x_{i} \in S$ for all $k \geq 1, x_{1}, \ldots, x_{k} \in S$, $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}, \lambda_{1}, \ldots, \lambda_{k} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1$.

Proof. For "if" take the special case $k=2$.
For "only if" we use induction on k, where the case $k=1$ is vacuous and $k=2$ is clear. Without loss of generality, $0<x_{k}<1$. Now rewrite $\sum_{i=1}^{k} \lambda_{i} x_{i}$ as

$$
\left(1-\lambda_{k}\right) \sum_{i=1}^{k-1} \frac{\lambda_{i}}{1-\lambda_{k}} x_{i}+\lambda_{k} x_{k}
$$

Compare:

- $U \subseteq \mathbb{R}^{d}$ is a linear subspace if $\lambda p+\mu q \in S$ for all $p, q \in S, \lambda, \mu \in \mathbb{R}$.
- $U \subseteq \mathbb{R}^{d}$ is an affine subspace if $\lambda p+\mu q \in S$ for all $p, q \in S, \lambda, \mu \in \mathbb{R}, \lambda+\mu=1$.

2.1.2 Operations on convex sets

Lemma 2.3 (Operations on convex sets). Let $K, K^{\prime} \subseteq \mathbb{R}^{d}$ be convex sets.

- $K \cap K^{\prime} \subseteq \mathbb{R}^{d}$ is convex.
- $K \times K^{\prime} \subseteq \mathbb{R}^{d+d}$ is convex.
- For any affine map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{e}, x \mapsto A x+b$, the image $f(K)$ is convex.
- The Minkowski sum $K+K^{\prime}:=\left\{x+y: x \in K, y \in K^{\prime}\right\}$ is convex.

Exercise 2.4. Interpret the Minkowski sum as the image of an affine map applied to a product.
Lemma 2.5. Hyperplanes $H=\left\{x \in \mathbb{R}^{d}: a^{t} x=\alpha\right\}$ are convex.
Open halfspaces $H^{+}=\left\{x \in \mathbb{R}^{d}: a^{t} x>\alpha\right\}$ and $H^{-}=\left\{x \in \mathbb{R}^{d}: a^{t} x<\alpha\right\}$ are convex.
Closed halfspaces $\bar{H}^{+}=\left\{x \in \mathbb{R}^{d}: a^{t} x \geq \alpha\right\}$ and $\bar{H}^{-}=\left\{x \in \mathbb{R}^{d}: a^{t} x \leq \alpha\right\}$ are convex.
More generally, for $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$,

- $\left\{x \in \mathbb{R}^{d}: A x=0\right\}$ is a linear subspace,
- $\left\{x \in \mathbb{R}^{d}: A x=b\right\}$ is an affine subspace,
- $\left\{x \in \mathbb{R}^{d}: A x<b\right\}$ and $\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ are convex subsets of \mathbb{R}^{d}.

2.1.3 Convex hulls, Radon's lemma and Helly's theorem

Definition 2.6 (convex hull). For any $S \subseteq \mathbb{R}^{d}$, the convex hull of S is defined as

$$
\operatorname{conv}(S):=\bigcap\left\{K \subseteq \mathbb{R}^{d}: K \text { convex, } S \subseteq K \subseteq \mathbb{R}^{d}\right\}
$$

Note the analogy to the usual definition of affine hull (an affine subspace) and linear hull (or span), a vector subspace.
Exercise 2.7. Show that

- conv (S) is convex,
- $S \subseteq \operatorname{conv}(S)$,
- $S \subseteq S^{\prime}$ implies $\operatorname{conv}(S) \subseteq \operatorname{conv}\left(S^{\prime}\right)$,
- $\operatorname{conv}(S)=S$ if S is convex, and
- $\operatorname{conv}(\operatorname{conv}(S))=\operatorname{conv}(S)$.

Lemma 2.8 (Radon’ \rrbracket^{1} lemma). Any $d+2$ points $p_{1}, \ldots, p_{d+2} \in \mathbb{R}^{d}$ can be partitioned into two groups $\left(p_{i}\right)_{i} \in I$ and $\left(p_{i}\right)_{i} \notin I$ whose convex hulls intersect.

Proof. The $d+2$ vectors $\binom{p_{1}}{1}, \ldots,\binom{p_{d+2}}{1} \in \mathbb{R}^{d+1}$ are linearly dependent,

$$
\lambda_{1}\binom{p_{1}}{1}+\cdots+\lambda_{d+2}\binom{p_{d+2}}{1}=\binom{0}{0} .
$$

Here not all λ_{i} 's are zero, so some are positive, some are negative, and we can take $I:=\{i$: $\left.\lambda_{i}>0\right\} \neq \emptyset$. Thus with $\Lambda:=\sum_{i \in I} \lambda_{i}>0$ we can rewrite the above equation as

$$
\sum_{i \in I} \frac{\lambda_{i}}{\Lambda} p_{i}=\sum_{i \notin I} \frac{-\lambda_{i}}{\Lambda} p_{i} .
$$

Note that even more so Radon's lemma holds for any $n \geq d+2$ points in \mathbb{R}^{d}.
Theorem 2.9 (Helly's Theorem). Let C_{1}, \ldots, C_{N} be a finite family of $N \geq d+1$ convex sets such that any $d+1$ of them have a non-empty intersection. Then the intersection of all N of them is non-empty as well.

Proof. This is trivial for $N=d+1$. Assume $N \geq d+2$. We use induction on N.
By induction, for each i there is a point \bar{p}_{i} that lies in all C_{j} except for possibly C_{i}. Now form a Radon partition of the points \bar{p}_{i}, and let p be a corresponding intersection point. About this point we find that on the one hand it lies in all C_{i} except for possibly those with $i \in I$, and on the other hand it lies in all C_{i} except for possibly those with $i \notin I$.

Note that the claim of Helly's theorem does not follow if we only require that any d sets intersect (take the C_{i} to be hyperplanes in general position!) or if we admit infinitely many convex sets (take $C_{i}:=[i, \infty)$).

[^0]
2.1.4 Separation theorems and supporting hyperplanes

Definition 2.10. A hyperplane H is a supporting hyperplane for a convex set K if $K \subset \bar{H}^{+}$ and $\bar{K} \cap H \neq \emptyset$.

Theorem 2.11 (Separation Theorem). If $K, K^{\prime} \neq \emptyset$ are disjoint closed convex sets, where K is compact, then there is a "separating hyperplane" H with $K \subset H^{+}$and $K^{\prime} \subset H^{-}$.
Also, in the same situation there is a supporting hyperplane M with $K \subset \bar{M}^{+}, K \cap M \neq \emptyset$, and $K^{\prime} \subset M^{-}$.

Proof. Define $\delta:=\min \left\{\|p-q\|: p \in K, q \in K^{\prime}\right\}$.
The minimum exists, and $\delta>0$, due to compactness, if we replace K^{\prime} by an intersection $K^{\prime} \cap M \cdot B^{d}$ with a large ball, which does not change the result of the minimization.
Furthermore, by compactness there are $p_{0} \in K$ and $q_{0} \in K^{\prime}$ with $\left\|p_{0}-q_{0}\right\|=\delta$.

Now define H and M^{\prime} by

$$
H:=\left\{x \in \mathbb{R}^{d}:\left(p_{0}-q_{0}\right)^{t} x=\left(p_{0}-q_{0}\right)^{t}\left(\frac{1}{2} p_{0}+\frac{1}{2} q_{0}\right)\right\}
$$

and

$$
M:=\left\{x \in \mathbb{R}^{d}:\left(p_{0}-q_{0}\right)^{t} x=\left(p_{0}-q_{0}\right)^{t} p_{0}\right\}
$$

and compute.
Example 2.12. Consider the (disjoint, closed) convex sets $K:=\left\{(x, y) \in \mathbb{R}^{2}: y \leq 0\right\}$ and $K^{\prime}:=\left\{(x, y) \in \mathbb{R}^{2}: y \geq e^{x}\right\}$.
Separation theorems like this are extremely useful not only in Discrete Geometry (as we will see shortly), but also in Optimization. Siehe auch den Hahn-Banach Satz in der Funktionalanalysis.

2.2 Polytopes

Definition 2.13 (Polytope). A polytope is the convex hull of a finite set, that is, a subset of the form $P=\operatorname{conv}(S) \subseteq \mathbb{R}^{d}$ for some finite set $S \subseteq \mathbb{R}^{d}$.

Examples 2.14. Polytopes: The empty set, any point, any bounded line segment, any triangle, and any convex polygon (in some \mathbb{R}^{n}) is a polytope.

Definition 2.15 (Simplex). Any convex hull of a set of $k+1$ affinely independent points (in \mathbb{R}^{n}, $k \leq n$), is a simplex.

Lemma 2.16. For $p_{1}, \ldots, p_{n} \in \mathbb{R}^{d}$, we have
$\operatorname{conv}\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)=\left\{\lambda_{1} p_{1}+\cdots+\lambda_{n} p_{n}: \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \lambda_{1}+\cdots+\lambda_{n}=1\right\}$.
Proof. For " \subseteq " we note that the RHS contains p_{1}, \ldots, p_{n}, and it is convex.
On the other hand, " \supseteq " follows from Lemma 2.2.
Definition 2.17 (Standard simplex). The ($n-1$)-dimensional standard simplex in \mathbb{R}^{n} is

$$
\begin{aligned}
\Delta_{n-1} & =\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \lambda_{1}+\cdots+\lambda_{n}=1\right\} \\
& =\operatorname{conv}\left(e_{1}, \ldots, e_{n}\right) .
\end{aligned}
$$

Corollary 2.18. The polytopes are exactly the affine images of the standard simplices.
Proof. ... under the linear (!) map given by $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \lambda_{1} p_{1}+\cdots+\lambda_{n} p_{n}$.
Definition 2.19 (Dimension). The dimension of a polytope (and more generally, of a convex set) is defined as the dimension of its affine hull.
Lemma 2.20. The dimension of $\operatorname{conv}\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)$ is $\operatorname{rank}\left(\begin{array}{ccc}p_{1} & \cdots & p_{n} \\ 1 & \cdots & 1\end{array}\right)-1$.
_End of class on October 22

2.2.1 Faces

We are interested in the boundary structure of convex polytopes, as we can describe it in terms of vertices, edges, etc.
Definition 2.21 (Faces). A face of a convex polytope P is any subset of the form $F=\{x \in P$: $\left.a^{t} x=\alpha\right\}$, where the linear inequality $a^{t} x \leq \alpha$ is valid for P (that is, it holds for all $x \in P$).
Thus the empty set \emptyset and the polytope P itself are faces, the trivial faces. All other faces are known as the non-trivial faces.
Lemma 2.22. The non-trivial faces F of P are of the form $F=P \cap H$, where H is a supporting hyperplane of P.
Lemma 2.23. Every face of a polytope is a polytope.
Proof. Let $P:=\operatorname{conv}(S)$ be a polytope and let F be a face of P defined by the inequality $a^{t} x \leq \alpha$. Define $S_{0}:=\left\{p \in S: a^{t} p=\alpha\right\}$ and $S_{-}:=\left\{p \in S: a^{t} p<\alpha\right\}$. Then $S=S_{0} \cup S_{-}$. Now a simple calculation shows that $F=\operatorname{conv}\left(S_{0}\right)$: The convex combination $\lambda_{1} p_{1}+\cdots+\lambda_{n} p_{n}$ satisfies the inequality with equality if and only if $\lambda_{i}=0$ for all $p_{i} \in S_{-}$. To see this, write for example $S_{-}=\left\{p_{1}, \ldots, p_{k}\right\}$ and $S_{0}=\left\{p_{1}^{\prime}, \ldots, p_{\ell}^{\prime}\right\}$, and calculate for $x \in F$:

$$
\begin{align*}
\alpha=a^{t} x & =a^{t}\left(\left(\lambda_{1} p_{1}+\cdots+\lambda_{k} p_{k}\right)+\left(\lambda_{1}^{\prime} p_{1}^{\prime}+\ldots \lambda_{\ell}^{\prime} p_{\ell}^{\prime}\right)\right) \tag{1}\\
& \left.=\left(\lambda_{1} a^{t} p_{1}+\cdots+\lambda_{k} a^{t} p_{k}\right)+\left(\lambda_{1}^{\prime} a^{t} p_{1}^{\prime}+\ldots \lambda_{\ell}^{\prime} a^{t} p_{\ell}^{\prime}\right)\right) \tag{2}\\
& \leq\left(\lambda_{1} \alpha+\cdots+\lambda_{k} \alpha\right)+\left(\lambda_{1}^{\prime} \alpha+\ldots \lambda_{\ell}^{\prime} \alpha\right) \tag{3}\\
& =\alpha\left(\lambda_{1}+\cdots+\lambda_{k}+\lambda_{1}^{\prime}+\ldots \lambda_{\ell}^{\prime}\right)=\alpha, \tag{4}
\end{align*}
$$

where $\lambda_{i} a^{t} p_{i} \leq \lambda_{i} \alpha$ for $1 \leq i \leq k$ and $\lambda_{j}^{\prime} a^{t} p_{j}^{\prime}=\lambda_{j}^{\prime} \alpha$ for $1 \leq j \leq \ell$. For this to hold, we must have $\lambda_{i} a^{t} p_{i}=\lambda_{i} \alpha$, but this holds only if $\lambda_{i}=0$ for all i. Thus we have $x=\lambda_{1}^{\prime} p_{1}^{\prime}+\ldots \lambda_{\ell}^{\prime} p_{\ell}^{\prime}$, so $x \in \operatorname{conv}\left(S_{0}\right)$.

Definition 2.24. Let P be a polytope of dimension d.
The 0 -dimensional faces are called vertices.
The 1-dimensional faces are called edges.
The $(d-2)$-dimensional faces are called ridges.
The $(d-1)$-dimensional faces are called facets.
A k-dimensional face will also be called a k-face.
The set of all vertices of P is called the vertex set of P, denoted $V(P)$.
Proposition 2.25. Every polytope is the convex hull of its vertex set, $P=\operatorname{conv}(V(P))$.
Moreover, if $P=\operatorname{conv}(S)$, then $V(P) \subseteq S$. In particular, every polytope has finitely many vertices.

Proof. Let $P=\operatorname{conv}(S)$ and replace S by an inclusion-minimal subset $V=V(P)$ with the property that $P=\operatorname{conv}(V)$. Thus none of the points $p \in V$ are contained in the convex hull of the others, that is, $p \notin \operatorname{conv}(V \backslash p)$. Now the Separation Theorem 2.11, applied to the convex sets $\{p\}$ and $\operatorname{conv}(V \backslash p)$, implies that there is a supporting hyperplane for $\{p\}$ (that is, a hyperplane through p) which does not meet $\operatorname{conv}(V \backslash p)$.
We take the corresponding linear inequality, which is satisfied by p with equality, and by all points in $\operatorname{conv}(V \backslash p)$ strictly. Thus $\{p\}$ is a face: a vertex.
Proposition 2.26. Every face of a face of P is a face of P.
Proof. Let $F \subset P$ be a face, defined by $a^{t} x \leq \alpha$. Let $G \subset F$ be a face, defined by $b^{t} x \leq \beta$. Then for sufficiently small $\varepsilon>0$, the inequality

$$
(a+\varepsilon b)^{t} x \leq \alpha+\varepsilon \beta
$$

is strictly satisfied for all vertices in $V(P) \backslash F$, since this is strictly satisfied for $\varepsilon=0$, so this leads to finitely-many conditions for ε to be "small enough." It is also strictly satisfied on $F \backslash G$ if $\varepsilon>0$, and it is satisfied with equality on G.

Now let x be any point in $P \backslash F$. Then we can write x as a convex combination of the vertices in P, say

$$
x=\left(\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right)+\left(\lambda_{1}^{\prime} v_{1}^{\prime}+\ldots \lambda_{\ell}^{\prime} v_{\ell}^{\prime}\right)
$$

for $S_{-}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $S_{0}=\left\{v_{1}^{\prime}, \ldots, v_{\ell}^{\prime}\right\}$ as in the proof of Lemma 2.23. As x does not lie in F, the coefficient of at least one vertex v_{i} of P not in F is positive. This implies that the inequality displayed above is strict for x.

Corollary 2.27. Every face F of a polytope P is the convex hull of the vertices of P that are contained in F :

$$
V(F)=F \cap V(P) .
$$

Proof. " \subseteq " is from Proposition 2.26 " \supseteq " is trivial.

[^0]: ${ }^{1}$ In class, I called this Carathéodory's lemma, which was wrong - Carathéodory's lemma is a related result, which you will see on the problem set.

