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This is the first in a series of three courses on Discrete Geometry. We will get to know fascinating geo-
metric structures such as configurations of points and lines, hyperplane arrangements, and in particular
polytopes and polyhedra, and learn how to handle them using modern methods for computation and vi-
sualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at
first sight (and some of it is), but it also very quickly touches topics of current research.

For students with an interest in discrete mathematics and geometry, this is the starting point to specialize
in discrete geometry. The topics addressed in the course supplement and deepen the understanding of
discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology,
and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some
knowledge of combinatorics and geometry is helpful.
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0 Introduction

What’s the goal?

This is a first course in a large and interesting mathematical domain commonly known as “Dis-
crete Geometry”. This spans from very classical topics (such as regular polyhedra – see Euclid’s
Elements) to very current research topics (Discrete Geometry, Extremal Geometry, Computa-
tional Geometry, Convex Geometry) that are also of great industrial importance (for Computer
Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in
such a way that

• you get an overview of the field of Discrete Geometry and its manifold connections,

• you learn to understand, analyze, visualize, and confidently/competently argue about the
basic structures of Discrete Geometry, which includes

– point configurations/hyperplane arrangements,
– frameworks
– subspace arrangements, and
– polytopes and polyhedra,

• you learn to know (and appreciate) the most important results in Discrete Geometry,
which includes both simple & basic as well as striking key results,

• you get to learn and practice important ideas and techniques from Discrete Geometry
(many of which are interesting also for other domains of Mathematics), and

• You learn about current research topics and problems treated in Discrete Geometry.
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1 Some highlights to start with

1.1 Point configurations

Proposition 1.1 (Sylvester–Gallai 1893/1944). Every finite set of n points in the plane, not all
on a line, n large, defines an “ordinary” line, which contain exactly 2 of the points.

The “BOOK proof” for this result is due to L. M. Kelly [1].

Theorem/Problem 1.2 (Green–Tao 2012 [4]). Every finite set of n points in the plane, not all
on a line, n large, defines at least n/2 “ordinary” lines, which contain exactly 2 of the points.
How large does n have to be for this to be true? n > 13?

Theorem/Problem 1.3 (Blagojevic–Matschke–Ziegler 2009 [2]). For d ≥ 1 and a prime r,
any (r − 1)(d + 1) + 1 colored points in Rd, where no r points have the same color, can be
partitioned into r “rainbow” subsets, in which no 2 points have the same color, such that the
convex hulls of the r blocks have a point in common.
Is this also true if r is not a prime? How about d = 2 and r = 4, cf. [6]?

1.2 Polytopes

Theorem 1.4 (Schläfli 1852). The complete classification of regular polytopes in Rd:
– d-simplex (d ≥ 1)
– the regular n-gon (d = 2, n ≥ 3)
– d-cube and d-crosspolytope (d ≥ 2)
– icosahedron and dodecahedron (d = 3)
– 24-cell (d = 4)
– 120-cell and 600-cell (d = 4)

Theorem/Problem 1.5 (Santos 2012 [9]). There is a simple polytope of dimension d = 43 and
n = 86 facets, whose graph diameter is not, as conjectured by Hirsch (1957), at most 43.
What is the largest possible graph diameter for a d-dimensional polytope with n facets? Is it a
polynomial function of n?

1.3 Sphere configurations/packings/tilings

Theorem/Problem 1.6 (see [8]). For d ≥ 2, the kissing number κd denotes the maximal number
of non-overlapping unit spheres that can simultaneously touch (“kiss”) a given unit sphere
in Rd.
d = 2: κ2 = 6, “hexagon configuration”, unique
d = 3: κ3 = 12, “dodecahedron configuration”, not unique
d = 4: κ4 = 24 (Musin 2008 [7]) “24-cell”, unique?
d = 8: κ8 = 240, E8 lattice, unique?
d = 24: κ24 = 196560, “Leech lattice”, unique?
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Theorem/Problem 1.7 (Engel 1980 [3] [5] [10]). There is a stereohedron (that is, a 3-dimensional
polytope whose congruent copies tile R3) with 38 facets. But is the maximal number of facets
of a stereohedron in R3 bounded at all?

[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Heidelberg
Berlin, fourth edition, 2009.

[2] Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler. Optimal bounds for the
colored Tverberg problem. Preprint, October 2009, 10 pages; revised November 2009, 11 pages; J.
European Math. Soc., to appear; http://arXiv.org/abs/0910.4987.

[3] Peter Engel. Über Wirkungsbereichsteilungen von kubischer Symmetrie. Zeitschrift f. Kristallo-
graphie, 154:199–215, 1981.

[4] Ben Green and Terence Tao. On sets defining few ordinary lines. Preprint, August 2012, 72 pages,
http://arxiv.org/abs/1208.4714.

[5] Branko Grünbaum and Geoffrey C. Shephard. Tilings with congruent tiles. Bulletin Amer. Math.
Soc., 3:951–973, 1980.

[6] Benjamin Matschke and Günter M. Ziegler. Die Rätselseite: Zehn bunte Punkte in der Ebene.
Mitteilungen der DMV, 18(3):171, 2010. http://page.math.tu-berlin.de/~mdmv/
archive/18/mdmv-18-3-171.pdf.

[7] Oleg R. Musin. The kissing number in four dimensions. Annals of Mathematics, 168:1–32, 2008.

[8] Florian Pfender and Günter M. Ziegler. Kissing numbers, sphere packings, and some unexpected
proofs. Notices of the AMS, 51(8):873–883, September 2004.

[9] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Math., 176:383–412,
2012.

[10] Moritz Schmitt and Günter M. Ziegler. Ten problems. In M. Senechal, editor, Shaping Space.
Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, pages 279–289 and 315–
319. Springer, New York, 2013.

End of class on October 15
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2 Basic structures in discrete geometry

2.1 Convex sets, intersections and separation

2.1.1 Convex sets

Geometry in Rd (or in any finite-dimensional vector space over a real closed field . . . )

Definition 2.1 (Convex set). A set S ⊆ Rd is convex if λp+µq ∈ S for all p, q ∈ S, λ, µ ∈ R≥0,
λ+ µ = 1.

Lemma 2.2. S ⊆ Rd is convex if and only if
∑k

i=1 λixi ∈ S for all k ≥ 1, x1, . . . , xk ∈ S,
λ1, . . . , λk ∈ R, λ1, . . . , λk ≥ 0,

∑k
i=1 λi = 1.

Proof. For “if” take the special case k = 2.
For “only if” we use induction on k, where the case k = 1 is vacuous and k = 2 is clear.
Without loss of generality, 0 < xk < 1. Now rewrite

∑k
i=1 λixi as

(1− λk)
k−1∑
i=1

λi
1− λk

xi + λkxk

Compare:
• U ⊆ Rd is a linear subspace if λp+ µq ∈ S for all p, q ∈ S, λ, µ ∈ R.
• U ⊆ Rd is an affine subspace if λp+ µq ∈ S for all p, q ∈ S, λ, µ ∈ R, λ+ µ = 1.

2.1.2 Operations on convex sets

Lemma 2.3 (Operations on convex sets). Let K,K ′ ⊆ Rd be convex sets.
• K ∩K ′ ⊆ Rd is convex.
• K ×K ′ ⊆ Rd+d is convex.
• For any affine map f : Rd → Re, x 7→ Ax+ b, the image f(K) is convex.
• The Minkowski sum K +K ′ := {x+ y : x ∈ K, y ∈ K ′} is convex.

Exercise 2.4. Interpret the Minkowski sum as the image of an affine map applied to a product.

Lemma 2.5. Hyperplanes H = {x ∈ Rd : atx = α} are convex.
Open halfspaces H+ = {x ∈ Rd : atx > α} and H− = {x ∈ Rd : atx < α} are convex.

Closed halfspaces H
+

= {x ∈ Rd : atx ≥ α} and H
−

= {x ∈ Rd : atx ≤ α} are convex.

More generally, for A ∈ Rn×d and b ∈ Rn,
• {x ∈ Rd : Ax = 0} is a linear subspace,
• {x ∈ Rd : Ax = b} is an affine subspace,
• {x ∈ Rd : Ax < b} and {x ∈ Rd : Ax ≤ b} are convex subsets of Rd.
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2.1.3 Convex hulls, Radon’s lemma and Helly’s theorem

Definition 2.6 (convex hull). For any S ⊆ Rd, the convex hull of S is defined as

conv(S) :=
⋂{

K ⊆ Rd : K convex, S ⊆ K ⊆ Rd
}
.

Note the analogy to the usual definition of affine hull (an affine subspace) and linear hull (or
span), a vector subspace.

Exercise 2.7. Show that
• conv(S) is convex,
• S ⊆ conv(S),
• S ⊆ S ′ implies conv(S) ⊆ conv(S ′),
• conv(S) = S if S is convex, and
• conv(conv(S)) = conv(S).

Lemma 2.8 (Radon’s1 lemma). Any d+ 2 points p1, . . . , pd+2 ∈ Rd can be partitioned into two
groups (pi)i ∈ I and (pi)i /∈ I whose convex hulls intersect.

Proof. The d+ 2 vectors
(
p1
1

)
, . . . ,

(
pd+2

1

)
∈ Rd+1 are linearly dependent,

λ1

(
p1
1

)
+ · · ·+ λd+2

(
pd+2

1

)
=

(
0

0

)
.

Here not all λi’s are zero, so some are positive, some are negative, and we can take I := {i :
λi > 0} 6= ∅. Thus with Λ :=

∑
i∈I λi > 0 we can rewrite the above equation as∑

i∈I

λi
Λ
pi =

∑
i/∈I

−λi
Λ
pi.

Note that even more so Radon’s lemma holds for any n ≥ d+ 2 points in Rd.

Theorem 2.9 (Helly’s Theorem). Let C1, . . . , CN be a finite family of N ≥ d + 1 convex sets
such that any d + 1 of them have a non-empty intersection. Then the intersection of all N of
them is non-empty as well.

Proof. This is trivial for N = d+ 1. Assume N ≥ d+ 2. We use induction on N .
By induction, for each i there is a point p̄i that lies in all Cj except for possibly Ci. Now form
a Radon partition of the points p̄i, and let p be a corresponding intersection point. About this
point we find that on the one hand it lies in all Ci except for possibly those with i ∈ I , and on
the other hand it lies in all Ci except for possibly those with i /∈ I .

Note that the claim of Helly’s theorem does not follow if we only require that any d sets intersect
(take the Ci to be hyperplanes in general position!) or if we admit infinitely many convex sets
(take Ci := [i,∞)).

End of class on October 16

1In class, I called this Carathéodory’s lemma, which was wrong – Carathéodory’s lemma is a related result,
which you will see on the problem set.

9



2.1.4 Separation theorems and supporting hyperplanes

Definition 2.10. A hyperplane H is a supporting hyperplane for a convex set K if K ⊂ H̄+

and K̄ ∩H 6= ∅.

Theorem 2.11 (Separation Theorem). If K,K ′ 6= ∅ are disjoint closed convex sets, where K is
compact, then there is a “separating hyperplane” H with K ⊂ H+ and K ′ ⊂ H−.
Also, in the same situation there is a supporting hyperplane M with K ⊂ M

+
, K ∩M 6= ∅,

and K ′ ⊂M−.

Proof. Define δ := min{‖p− q‖ : p ∈ K, q ∈ K ′}.
The minimum exists, and δ > 0, due to compactness, if we replace K ′ by an intersection
K ′ ∩M ·Bd with a large ball, which does not change the result of the minimization.
Furthermore, by compactness there are p0 ∈ K and q0 ∈ K ′ with ‖p0 − q0‖ = δ.

p0

q0

K

K ′

M H

Now define H and M ′ by

H := {x ∈ Rd : (p0 − q0)tx = (p0 − q0)t(12p0 + 1
2
q0)}

and
M := {x ∈ Rd : (p0 − q0)tx = (p0 − q0)tp0}

and compute.

Example 2.12. Consider the (disjoint, closed) convex sets K := {(x, y) ∈ R2 : y ≤ 0} and
K ′ := {(x, y) ∈ R2 : y ≥ ex}.

Separation theorems like this are extremely useful not only in Discrete Geometry (as we will see
shortly), but also in Optimization. Siehe auch den Hahn–Banach Satz in der Funktionalanalysis.

2.2 Polytopes

Definition 2.13 (Polytope). A polytope is the convex hull of a finite set, that is, a subset of the
form P = conv(S) ⊆ Rd for some finite set S ⊆ Rd.

Examples 2.14. Polytopes: The empty set, any point, any bounded line segment, any triangle,
and any convex polygon (in some Rn) is a polytope.

Definition 2.15 (Simplex). Any convex hull of a set of k+1 affinely independent points (in Rn,
k ≤ n), is a simplex.
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Lemma 2.16. For p1, . . . , pn ∈ Rd, we have

conv({p1, . . . , pn}) = {λ1p1+· · ·+λnpn : λ1, . . . , λn ∈ R, λ1, . . . , λn ≥ 0, λ1+· · ·+λn = 1}.

Proof. For “⊆” we note that the RHS contains p1, . . . , pn, and it is convex.
On the other hand, “⊇” follows from Lemma 2.2.

Definition 2.17 (Standard simplex). The (n− 1)-dimensional standard simplex in Rn is

∆n−1 = {(λ1, . . . , λn) ∈ Rn, λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}
= conv(e1, . . . , en).

Corollary 2.18. The polytopes are exactly the affine images of the standard simplices.

Proof. . . . under the linear (!) map given by (λ1, . . . , λn) 7→ λ1p1 + · · ·+ λnpn.

Definition 2.19 (Dimension). The dimension of a polytope (and more generally, of a convex
set) is defined as the dimension of its affine hull.

Lemma 2.20. The dimension of conv({p1, . . . , pn}) is rank
(p1 · · · pn

1 · · · 1

)
− 1.

End of class on October 22

2.2.1 Faces

We are interested in the boundary structure of convex polytopes, as we can describe it in terms
of vertices, edges, etc.

Definition 2.21 (Faces). A face of a convex polytope P is any subset of the form F = {x ∈ P :
atx = α}, where the linear inequality atx ≤ α is valid for P (that is, it holds for all x ∈ P ).

Thus the empty set ∅ and the polytope P itself are faces, the trivial faces. All other faces are
known as the non-trivial faces.

Lemma 2.22. The non-trivial faces F of P are of the form F = P ∩H , whereH is a supporting
hyperplane of P .

Lemma 2.23. Every face of a polytope is a polytope.

Proof. Let P := conv(S) be a polytope and let F be a face of P defined by the inequality
atx ≤ α. Define S0 := {p ∈ S : atp = α} and S− := {p ∈ S : atp < α}. Then S = S0 ∪ S−.
Now a simple calculation shows that F = conv(S0): The convex combination λ1p1+· · ·+λnpn
satisfies the inequality with equality if and only if λi = 0 for all pi ∈ S−. To see this, write for
example S− = {p1, . . . , pk} and S0 = {p′1, . . . , p′`}, and calculate for x ∈ F :

α = atx = at((λ1p1 + · · ·+ λkpk) + (λ′1p
′
1 + . . . λ′`p

′
`)) (1)

= (λ1a
tp1 + · · ·+ λka

tpk) + (λ′1a
tp′1 + . . . λ′`a

tp′`)) (2)
≤ (λ1α + · · ·+ λkα) + (λ′1α + . . . λ′`α) (3)
= α(λ1 + · · ·+ λk + λ′1 + . . . λ′`) = α, (4)

where λiatpi ≤ λiα for 1 ≤ i ≤ k and λ′ja
tp′j = λ′jα for 1 ≤ j ≤ `. For this to hold, we must

have λiatpi = λiα, but this holds only if λi = 0 for all i. Thus we have x = λ′1p
′
1 + . . . λ′`p

′
`, so

x ∈ conv(S0).
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Definition 2.24. Let P be a polytope of dimension d.
The 0-dimensional faces are called vertices.
The 1-dimensional faces are called edges.
The (d− 2)-dimensional faces are called ridges.
The (d− 1)-dimensional faces are called facets.
A k-dimensional face will also be called a k-face.
The set of all vertices of P is called the vertex set of P , denoted V (P ).

Proposition 2.25. Every polytope is the convex hull of its vertex set, P = conv(V (P )).
Moreover, if P = conv(S), then V (P ) ⊆ S. In particular, every polytope has finitely many
vertices.

Proof. Let P = conv(S) and replace S by an inclusion-minimal subset V = V (P ) with the
property that P = conv(V ). Thus none of the points p ∈ V are contained in the convex
hull of the others, that is, p /∈ conv(V \p). Now the Separation Theorem 2.11, applied to the
convex sets {p} and conv(V \p), implies that there is a supporting hyperplane for {p} (that is, a
hyperplane through p) which does not meet conv(V \p).
We take the corresponding linear inequality, which is satisfied by p with equality, and by all
points in conv(V \p) strictly. Thus {p} is a face: a vertex.

Proposition 2.26. Every face of a face of P is a face of P .

Proof. Let F ⊂ P be a face, defined by atx ≤ α. Let G ⊂ F be a face, defined by btx ≤ β.
Then for sufficiently small ε > 0, the inequality

(a+ εb)tx ≤ α + εβ

is strictly satisfied for all vertices in V (P )\F , since this is strictly satisfied for ε = 0, so this
leads to finitely-many conditions for ε to be “small enough.” It is also strictly satisfied on F \G
if ε > 0, and it is satisfied with equality on G.

P
F

atx ≤ α

btx ≤ β

Now let x be any point in P \ F . Then we can write x as a convex combination of the vertices
in P , say

x = (λ1v1 + · · ·+ λkvk) + (λ′1v
′
1 + . . . λ′`v

′
`)

for S− = {v1, . . . , vk} and S0 = {v′1, . . . , v′`} as in the proof of Lemma 2.23. As x does not
lie in F , the coefficient of at least one vertex vi of P not in F is positive. This implies that the
inequality displayed above is strict for x.
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Corollary 2.27. Every face F of a polytope P is the convex hull of the vertices of P that are
contained in F :

V (F ) = F ∩ V (P ).

Proof. “⊆” is from Proposition 2.26. “⊇” is trivial.

End of class on October 23
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