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This is the first in a series of three courses on Discrete Geometry. We will get to know fascinating geo-
metric structures such as configurations of points and lines, hyperplane arrangements, and in particular
polytopes and polyhedra, and learn how to handle them using modern methods for computation and vi-
sualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at
first sight (and some of it is), but it also very quickly touches topics of current research.

For students with an interest in discrete mathematics and geometry, this is the starting point to specialize
in discrete geometry. The topics addressed in the course supplement and deepen the understanding of
discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology,
and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some
knowledge of combinatorics and geometry is helpful.
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0 Introduction

What’s the goal?

This is a first course in a large and interesting mathematical domain commonly known as “Dis-
crete Geometry”. This spans from very classical topics (such as regular polyhedra – see Euclid’s
Elements) to very current research topics (Discrete Geometry, Extremal Geometry, Computa-
tional Geometry, Convex Geometry) that are also of great industrial importance (for Computer
Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in
such a way that

• you get an overview of the field of Discrete Geometry and its manifold connections,

• you learn to understand, analyze, visualize, and confidently/competently argue about the
basic structures of Discrete Geometry, which includes

– point configurations/hyperplane arrangements,
– frameworks
– subspace arrangements, and
– polytopes and polyhedra,

• you learn to know (and appreciate) the most important results in Discrete Geometry,
which includes both simple & basic as well as striking key results,

• you get to learn and practice important ideas and techniques from Discrete Geometry
(many of which are interesting also for other domains of Mathematics), and

• You learn about current research topics and problems treated in Discrete Geometry.
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1 Some highlights to start with

1.1 Point configurations

Proposition 1.1 (Sylvester–Gallai 1893/1944). Every finite set of n points in the plane, not all
on a line, n large, defines an “ordinary” line, which contain exactly 2 of the points.

The “BOOK proof” for this result is due to L. M. Kelly [1].

Theorem/Problem 1.2 (Green–Tao 2012 [4]). Every finite set of n points in the plane, not all
on a line, n large, defines at least n/2 “ordinary” lines, which contain exactly 2 of the points.
How large does n have to be for this to be true? n > 13?

Theorem/Problem 1.3 (Blagojevic–Matschke–Ziegler 2009 [2]). For d ≥ 1 and a prime r,
any (r − 1)(d + 1) + 1 colored points in Rd, where no r points have the same color, can be
partitioned into r “rainbow” subsets, in which no 2 points have the same color, such that the
convex hulls of the r blocks have a point in common.
Is this also true if r is not a prime? How about d = 2 and r = 4, cf. [6]?

1.2 Polytopes

Theorem 1.4 (Schläfli 1852). The complete classification of regular polytopes in Rd:
– d-simplex (d ≥ 1)
– the regular n-gon (d = 2, n ≥ 3)
– d-cube and d-crosspolytope (d ≥ 2)
– icosahedron and dodecahedron (d = 3)
– 24-cell (d = 4)
– 120-cell and 600-cell (d = 4)

Theorem/Problem 1.5 (Santos 2012 [9]). There is a simple polytope of dimension d = 43 and
n = 86 facets, whose graph diameter is not, as conjectured by Hirsch (1957), at most 43.
What is the largest possible graph diameter for a d-dimensional polytope with n facets? Is it a
polynomial function of n?

1.3 Sphere configurations/packings/tilings

Theorem/Problem 1.6 (see [8]). For d ≥ 2, the kissing number κd denotes the maximal number
of non-overlapping unit spheres that can simultaneously touch (“kiss”) a given unit sphere
in Rd.
d = 2: κ2 = 6, “hexagon configuration”, unique
d = 3: κ3 = 12, “dodecahedron configuration”, not unique
d = 4: κ4 = 24 (Musin 2008 [7]) “24-cell”, unique?
d = 8: κ8 = 240, E8 lattice, unique?
d = 24: κ24 = 196560, “Leech lattice”, unique?
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Theorem/Problem 1.7 (Engel 1980 [3] [5] [10]). There is a stereohedron (that is, a 3-dimensional
polytope whose congruent copies tile R3) with 38 facets. But is the maximal number of facets
of a stereohedron in R3 bounded at all?

[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Heidelberg
Berlin, fourth edition, 2009.

[2] Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler. Optimal bounds for the
colored Tverberg problem. Preprint, October 2009, 10 pages; revised November 2009, 11 pages; J.
European Math. Soc., to appear; http://arXiv.org/abs/0910.4987.

[3] Peter Engel. Über Wirkungsbereichsteilungen von kubischer Symmetrie. Zeitschrift f. Kristallo-
graphie, 154:199–215, 1981.

[4] Ben Green and Terence Tao. On sets defining few ordinary lines. Preprint, August 2012, 72 pages,
http://arxiv.org/abs/1208.4714.

[5] Branko Grünbaum and Geoffrey C. Shephard. Tilings with congruent tiles. Bulletin Amer. Math.
Soc., 3:951–973, 1980.

[6] Benjamin Matschke and Günter M. Ziegler. Die Rätselseite: Zehn bunte Punkte in der Ebene.
Mitteilungen der DMV, 18(3):171, 2010. http://page.math.tu-berlin.de/~mdmv/
archive/18/mdmv-18-3-171.pdf.

[7] Oleg R. Musin. The kissing number in four dimensions. Annals of Mathematics, 168:1–32, 2008.

[8] Florian Pfender and Günter M. Ziegler. Kissing numbers, sphere packings, and some unexpected
proofs. Notices of the AMS, 51(8):873–883, September 2004.

[9] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Math., 176:383–412,
2012.

[10] Moritz Schmitt and Günter M. Ziegler. Ten problems. In M. Senechal, editor, Shaping Space.
Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, pages 279–289 and 315–
319. Springer, New York, 2013.

End of class on October 15
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2 Basic structures in discrete geometry

2.1 Convex sets, intersections and separation

2.1.1 Convex sets

Geometry in Rd (or in any finite-dimensional vector space over a real closed field . . . )

Definition 2.1 (Convex set). A set S ⊆ Rd is convex if λp+µq ∈ S for all p, q ∈ S, λ, µ ∈ R≥0,
λ+ µ = 1.

Lemma 2.2. S ⊆ Rd is convex if and only if
∑k

i=1 λixi ∈ S for all k ≥ 1, x1, . . . , xk ∈ S,
λ1, . . . , λk ∈ R, λ1, . . . , λk ≥ 0,

∑k
i=1 λi = 1.

Proof. For “if” take the special case k = 2.
For “only if” we use induction on k, where the case k = 1 is vacuous and k = 2 is clear.
Without loss of generality, 0 < xk < 1. Now rewrite

∑k
i=1 λixi as

(1− λk)
k−1∑
i=1

λi
1− λk

xi + λkxk

Compare:
• U ⊆ Rd is a linear subspace if λp+ µq ∈ S for all p, q ∈ S, λ, µ ∈ R.
• U ⊆ Rd is an affine subspace if λp+ µq ∈ S for all p, q ∈ S, λ, µ ∈ R, λ+ µ = 1.

2.1.2 Operations on convex sets

Lemma 2.3 (Operations on convex sets). Let K,K ′ ⊆ Rd be convex sets.
• K ∩K ′ ⊆ Rd is convex.
• K ×K ′ ⊆ Rd+d is convex.
• For any affine map f : Rd → Re, x 7→ Ax+ b, the image f(K) is convex.
• The Minkowski sum K +K ′ := {x+ y : x ∈ K, y ∈ K ′} is convex.

Exercise 2.4. Interpret the Minkowski sum as the image of an affine map applied to a product.

Lemma 2.5. Hyperplanes H = {x ∈ Rd : atx = α} are convex.
Open halfspaces H+ = {x ∈ Rd : atx > α} and H− = {x ∈ Rd : atx < α} are convex.

Closed halfspaces H
+

= {x ∈ Rd : atx ≥ α} and H
−

= {x ∈ Rd : atx ≤ α} are convex.

More generally, for A ∈ Rn×d and b ∈ Rn,
• {x ∈ Rd : Ax = 0} is a linear subspace,
• {x ∈ Rd : Ax = b} is an affine subspace,
• {x ∈ Rd : Ax < b} and {x ∈ Rd : Ax ≤ b} are convex subsets of Rd.
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2.1.3 Convex hulls, Radon’s lemma and Helly’s theorem

Definition 2.6 (convex hull). For any S ⊆ Rd, the convex hull of S is defined as

conv(S) :=
⋂{

K ⊆ Rd : K convex, S ⊆ K ⊆ Rd
}
.

Note the analogy to the usual definition of affine hull (an affine subspace) and linear hull (or
span), a vector subspace.

Exercise 2.7. Show that
• conv(S) is convex,
• S ⊆ conv(S),
• S ⊆ S ′ implies conv(S) ⊆ conv(S ′),
• conv(S) = S if S is convex, and
• conv(conv(S)) = conv(S).

Lemma 2.8 (Radon’s1 lemma). Any d+ 2 points p1, . . . , pd+2 ∈ Rd can be partitioned into two
groups (pi)i ∈ I and (pi)i /∈ I whose convex hulls intersect.

Proof. The d+ 2 vectors
(
p1
1

)
, . . . ,

(
pd+2

1

)
∈ Rd+1 are linearly dependent,

λ1

(
p1
1

)
+ · · ·+ λd+2

(
pd+2

1

)
=

(
0

0

)
.

Here not all λi’s are zero, so some are positive, some are negative, and we can take I := {i :
λi > 0} 6= ∅. Thus with Λ :=

∑
i∈I λi > 0 we can rewrite the above equation as∑

i∈I

λi
Λ
pi =

∑
i/∈I

−λi
Λ
pi.

Note that even more so Radon’s lemma holds for any n ≥ d+ 2 points in Rd.

Theorem 2.9 (Helly’s Theorem). Let C1, . . . , CN be a finite family of N ≥ d + 1 convex sets
such that any d + 1 of them have a non-empty intersection. Then the intersection of all N of
them is non-empty as well.

Proof. This is trivial for N = d+ 1. Assume N ≥ d+ 2. We use induction on N .
By induction, for each i there is a point p̄i that lies in all Cj except for possibly Ci. Now form
a Radon partition of the points p̄i, and let p be a corresponding intersection point. About this
point we find that on the one hand it lies in all Ci except for possibly those with i ∈ I , and on
the other hand it lies in all Ci except for possibly those with i /∈ I .

Note that the claim of Helly’s theorem does not follow if we only require that any d sets intersect
(take the Ci to be hyperplanes in general position!) or if we admit infinitely many convex sets
(take Ci := [i,∞)).

End of class on October 16

1In class, I called this Carathéodory’s lemma, which was wrong – Carathéodory’s lemma is a related result,
which you will see on the problem set.
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2.1.4 Separation theorems and supporting hyperplanes

Definition 2.10. A hyperplane H is a supporting hyperplane for a convex set K if K ⊂ H̄+

and K̄ ∩H 6= ∅.

Theorem 2.11 (Separation Theorem). If K,K ′ 6= ∅ are disjoint closed convex sets, where K is
compact, then there is a “separating hyperplane” H with K ⊂ H+ and K ′ ⊂ H−.
Also, in the same situation there is a supporting hyperplane M with K ⊂ M

+
, K ∩M 6= ∅,

and K ′ ⊂M−.

Proof. Define δ := min{‖p− q‖ : p ∈ K, q ∈ K ′}.
The minimum exists, and δ > 0, due to compactness, if we replace K ′ by an intersection
K ′ ∩M ·Bd with a large ball, which does not change the result of the minimization.
Furthermore, by compactness there are p0 ∈ K and q0 ∈ K ′ with ‖p0 − q0‖ = δ.

p0

q0

K

K ′

M H

Now define H and M ′ by

H := {x ∈ Rd : (p0 − q0)tx = (p0 − q0)t(12p0 + 1
2
q0)}

and
M := {x ∈ Rd : (p0 − q0)tx = (p0 − q0)tp0}

and compute.

Example 2.12. Consider the (disjoint, closed) convex sets K := {(x, y) ∈ R2 : y ≤ 0} and
K ′ := {(x, y) ∈ R2 : y ≥ ex}.

Separation theorems like this are extremely useful not only in Discrete Geometry (as we will see
shortly), but also in Optimization. Siehe auch den Hahn–Banach Satz in der Funktionalanalysis.

2.2 Polytopes

Definition 2.13 (Polytope). A polytope is the convex hull of a finite set, that is, a subset of the
form P = conv(S) ⊆ Rd for some finite set S ⊆ Rd.

Examples 2.14. Polytopes: The empty set, any point, any bounded line segment, any triangle,
and any convex polygon (in some Rn) is a polytope.

Definition 2.15 (Simplex). Any convex hull of a set of k+1 affinely independent points (in Rn,
k ≤ n), is a simplex.

10



Lemma 2.16. For p1, . . . , pn ∈ Rd, we have

conv({p1, . . . , pn}) = {λ1p1+· · ·+λnpn : λ1, . . . , λn ∈ R, λ1, . . . , λn ≥ 0, λ1+· · ·+λn = 1}.

Proof. For “⊆” we note that the RHS contains p1, . . . , pn, and it is convex.
On the other hand, “⊇” follows from Lemma 2.2.

Definition 2.17 (Standard simplex). The (n− 1)-dimensional standard simplex in Rn is

∆n−1 = {(λ1, . . . , λn) ∈ Rn, λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}
= conv{e1, . . . , en}.

Corollary 2.18. The polytopes are exactly the affine images of the standard simplices.

Proof. . . . under the linear (!) map given by (λ1, . . . , λn) 7→ λ1p1 + · · ·+ λnpn.

Definition 2.19 (Dimension). The dimension of a polytope (and more generally, of a convex
set) is defined as the dimension of its affine hull.

Lemma 2.20. The dimension of conv({p1, . . . , pn}) is rank
(p1 · · · pn

1 · · · 1

)
− 1.

End of class on October 22

2.2.1 Faces

We are interested in the boundary structure of convex polytopes, as we can describe it in terms
of vertices, edges, etc.

Definition 2.21 (Faces). A face of a convex polytope P is any subset of the form F = {x ∈ P :
atx = α}, where the linear inequality atx ≤ α is valid for P (that is, it holds for all x ∈ P ).

Thus the empty set ∅ and the polytope P itself are faces, the trivial faces. All other faces are
known as the non-trivial faces.

Lemma 2.22. The non-trivial faces F of P are of the form F = P ∩H , whereH is a supporting
hyperplane of P .

Lemma 2.23. Every face of a polytope is a polytope.

Proof. Let P := conv(S) be a polytope and let F be a face of P defined by the inequality
atx ≤ α. Define S0 := {p ∈ S : atp = α} and S− := {p ∈ S : atp < α}. Then S = S0 ∪ S−.
Now a simple calculation shows that F = conv(S0): The convex combination λ1p1+· · ·+λnpn
satisfies the inequality with equality if and only if λi = 0 for all pi ∈ S−. To see this, write for
example S− = {p1, . . . , pk} and S0 = {p′1, . . . , p′`}, and calculate for x ∈ F :

α = atx = at((λ1p1 + · · ·+ λkpk) + (λ′1p
′
1 + . . . λ′`p

′
`)) (1)

= (λ1a
tp1 + · · ·+ λka

tpk) + (λ′1a
tp′1 + . . . λ′`a

tp′`)) (2)
≤ (λ1α + · · ·+ λkα) + (λ′1α + . . . λ′`α) (3)
= α(λ1 + · · ·+ λk + λ′1 + . . . λ′`) = α, (4)

where λiatpi ≤ λiα for 1 ≤ i ≤ k and λ′ja
tp′j = λ′jα for 1 ≤ j ≤ `. For this to hold, we must

have λiatpi = λiα, but this holds only if λi = 0 for all i. Thus we have x = λ′1p
′
1 + . . . λ′`p

′
`, so

x ∈ conv(S0).

11



Definition 2.24. Let P be a polytope of dimension d.
The 0-dimensional faces are called vertices.
The 1-dimensional faces are called edges.
The (d− 2)-dimensional faces are called ridges.
The (d− 1)-dimensional faces are called facets.
A k-dimensional face will also be called a k-face.
The set of all vertices of P is called the vertex set of P , denoted V (P ).

Proposition 2.25. Every polytope is the convex hull of its vertex set, P = conv(V (P )).
Moreover, if P = conv(S), then V (P ) ⊆ S. In particular, every polytope has finitely many
vertices.

Proof. Let P = conv(S) and replace S by an inclusion-minimal subset V = V (P ) with the
property that P = conv(V ). Thus none of the points p ∈ V are contained in the convex
hull of the others, that is, p /∈ conv(V \p). Now the Separation Theorem 2.11, applied to the
convex sets {p} and conv(V \p), implies that there is a supporting hyperplane for {p} (that is, a
hyperplane through p) which does not meet conv(V \p).
We take the corresponding linear inequality, which is satisfied by p with equality, and by all
points in conv(V \p) strictly. Thus {p} is a face: a vertex.

Proposition 2.26. Every face of a face of P is a face of P .

Proof. Let F ⊂ P be a face, defined by atx ≤ α. Let G ⊂ F be a face, defined by btx ≤ β.
Then for sufficiently small ε > 0, the inequality

(a+ εb)tx ≤ α + εβ

is strictly satisfied for all vertices in V (P )\F , since this is strictly satisfied for ε = 0, so this
leads to finitely-many conditions for ε to be “small enough.” It is also strictly satisfied on F \G
if ε > 0, and it is satisfied with equality on G.

P
F

atx ≤ α

btx ≤ β

Now let x be any point in P \ F . Then we can write x as a convex combination of the vertices
in P , say

x = (λ1v1 + · · ·+ λkvk) + (λ′1v
′
1 + . . . λ′`v

′
`)

for S− = {v1, . . . , vk} and S0 = {v′1, . . . , v′`} as in the proof of Lemma 2.23. As x does not
lie in F , the coefficient of at least one vertex vi of P not in F is positive. This implies that the
inequality displayed above is strict for x.

12



Corollary 2.27. Every face F of a polytope P is the convex hull of the vertices of P that are
contained in F :

V (F ) = F ∩ V (P ).

Proof. “⊆” is from Proposition 2.26. “⊇” is trivial.

End of class on October 23

In particular, any polytope has only finitely many faces.

Lemma 2.28. Any intersection of faces of a polytope P is a face of P .

Proof. Add the inequalities.

Definition 2.29 (Vertex figure). Let v be a vertex of a d-dimensional polytope P , and let H be
a hyperplane that separates v from conv(V (P ) \ {v}). Then

P/v := P ∩H

is called a vertex figure of P at v.

Proposition 2.30. If P = conv(S ∪ {v}) with atv > α while as < α for s ∈ S, where
H = {x ∈ Rd : at = α}, then

P/v = conv
{ atv − α

atv − ats
s+

α − ats
atv − ats

v : s ∈ S
}
.

In particular, P/v is a polytope.

Proof. “⊇”: the points s̄ := atv− α
atv−atss+ α −ats

atv−atsv have been constructed as points λs+ (1− λ)v
such that ats̄ = α, so s̄ ∈ P/v.
“⊆”: calculate that if x ∈ conv(S ∪ {v}) satisfies atx = α, then it can be written as a convex
combination of the points s̄. For this, write

x =
∑
i

λisi + λ0v

=
∑
i

λi
atv − atsi
atv − α

atv − α

atv − atsi
si + λ0v

=
∑
i

λi
atv − atsi
atv − α

( atv − α

atv − atsi
si +

α − atsi
atv − atsi

v
)

+
(
λ0 −

∑
i

λi
α − atsi
atv − α

)
v

=
∑
i

λi
atv − atsi
atv − α

s̄i +
(
λ0 −

α
∑

i λi −
∑

i λia
tsi

atv − α

)
v.

At this point we use that x ∈ H , that is, atx =
∑

i λia
tsi + λ0a

tv = α, and that this was a
convex combination, so

∑
i λi = 1 − λ0, to conclude that the last term in large parentheses

is 0.

Exercise 2.31. Let P := conv{π(±1,±1, 0, 0) : π ∈ S4} be the convex hull of all the vectors
that have two ±1 entries and two zero coordinates.

13



• How many vectors are these?
• Why are they all vertices?
• Why do they all have the same vertex figure?
• Compute one vertex figure.

Proposition 2.32. For any vertex v of a d-polytope P , the k-dimensional faces of P/v are in an
inclusion-preserving bijection with the (k + 1)-dimensional faces of P that contain v.
In particular, P/v is a polytope of dimension d− 1.

Proof. Clearly if F is a face of P , then F ∩H is a face of P ∩H = P/v.
Note that v /∈ H . Thus every (k + 1)-face F ⊆ P with v ∈ P defines a k-face F/v of P/v:
From the previous proof we can see that aff((F ∩H) ∪ {v}) = aff(F ).
For the converse, letG ⊆ P/v be a k-face, defined by the inequality btx ≤ β. Then we calculate
that this inequality, plus a suitable (not necessarily positive!) multiple of the equation atx = α
defining H , is satisfied with equality on P ∩ (aff(G∪{v})), but strictly on all other points of P .
Explicitly, the inequality we consider is

(bt + µat)x ≤ β + µα, (5)

and this will be satisfied with equality on v if (bt + µat)v = β + µα, that is, if µ = − btv−β
atv−α ,

where the denominator is positive. This inequality (5) is valid on P/v and valid with equality
on v. Let P = conv(S ∪ {v}. Then the inequality is valid on all points of S as well, since a
point s ∈ S that violates it would give rise to s̄ ∈ P/v that violates it as well.
Thus

Ĝ := P ∩ (aff(G ∪ {v}))

is the desired (k + 1)-face of P .

End of class on October 29

2.2.2 Order theory and the face lattice

Definition 2.33 (Posets and lattices). A poset is a partially ordered set, that is, a set S with a
binary relation “≤” that is reflexive (x ≤ x for all x ∈ S), asymmetric (x ≤ y ≤ x implies
x = y) and transitive (x ≤ y ≤ z implies x ≤ z). (All posets we consider are finite.) Formally,
the poset could be written (S,≤), but it is customary to write the same letter S for the poset.
An interval in a poset (S,≤) is a subposet (i.e., a subset with the induced partial order) of the
form

[x, y] := ({z ∈ S : x ≤ z ≤ y},≤)

for x, y ∈ S, x ≤ y.
A chain in a poset is a totally-ordered subset.
A poset is bounded if it has a unique minimal element, denoted 0̂, and a unique maximal ele-
ment, denoted 1̂.
A poset is graded if it has a unique minimal element 0̂, and if for every element x of the poset,
all maximal chains from 0̂ to x have the same length, called the rank of the element, usually
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denoted r(x). The function r : S → N0 is then called the rank function of S. If a poset is
graded and has a maximal element 1̂, we write r(S) := r(1̂) for the rank of the poset.
A poset is a lattice if any two elements a, b have a unique minimal upper bound, denoted a ∨ b,
called the join of a and b, and a unique maximal lower bound, denoted a∧b, and called the meet
of a and b.

Exercise 2.34. Let (Q,≤) be a finite partial order. Show that any two of the following properties
yield the third:

1. The poset is bounded.
2. Meets exist.
3. Joins exist.

Exercise 2.35. Let Q be a finite lattice, and A be an arbitrary subset. Then A has a unique
minimal upper bound, the join

∨
A, and a unique maximal lower bound, the meet

∧
A.

Theorem 2.36 (The polytope face lattice). The face poset (F ,⊂) of any polytope is a finite
graded lattice, denoted L = L(P ), of rank r(L(P )) = dim(P ) + 1.

Proof. This is a finite bounded poset, with minimal element 0̂ = ∅ and maximal element 1̂ = P .
Meet exists, as clearly F ∧ F ′ = F ∩ F ′ is the largest face contained in both F and F ′. (The
intersection is a face by Lemma 2.28.) Thus L(P ) is a lattice.
If G ⊂ F are faces, then in particular G is a face of F , and thus dim(G) < dim(F ). Thus all
we have to prove is that if dim(F ) ≥ dim(G) + 2, then there is a face H with G ⊂ H ⊂ F .
If F ⊂ P , then dim(F ) < dim(P ), so we are done by induction.
If ∅ ⊂ G, then G has a vertex v, and [G,F ] ⊆ [v, P ] = L(P/v), where dim(P/v) < dim(P ),
so we are done by induction.
If G = ∅ and F = P , where dim(P ) ≥ 1, then P has a vertex w, where ∅ ⊂ {w} ⊂ P .

Definition 2.37 (Combinatorially equivalent). Two polytopes P and P ′ are combinatorially
equivalent if their face lattices L,L′ are isomorphic as posets, that is, if there is a bijection
f : L→ L′ such that x ≤L y holds in P if and only if f(x) ≤L′ f(y) holds in P ′.

Exercise 2.38. Define “isomorphic” for posets, and for lattices. Show that if Q is a poset and
L is a lattice, and if Q and L are isomorphic as posets, then Q is a lattice, and Q and L are also
isomorphic as lattices.

Exercise 2.39. Let us consider the posetD(n) of all divisors of the natural number n (examples
to try: 24 and 42 and 64), ordered by divisibility. Are these posets? Are they bounded? Are
they lattices? Graded? What is the rank function? Can you describe join and meet?
For which n is there a polytope with D(n) isomorphic to its face lattice?

Lemma 2.40. If two polytopes P, P ′ are affinely isomorphic (that is, if there is an affine bijective
map P → P ′), then they are combinatorially equivalent. The converse is wrong.

Lemma 2.41 (Face lattice of a simplex). Let ∆k−1 be a (k − 1)-dimensional simplex (with k
vertices). Its face lattice is isomorphic to the poset of all subsets of a k-element set, ordered by
inclusion known as the Boolean algebra Bk of rank k, as given for example by (2[k],⊆), where
2[k] denotes the collection of all subsets of [k] := {1, 2, . . . , k}.
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Proof. Any two (k − 1)-simplices are affinely equivalent.
Any subset of the vertex set of a simplex defines a face, which is a simplex.

Exercise 2.42. Prove that if any subset of vertex set of a polytope defines a face, then the
polytope is a simplex.

Theorem 2.43 (Intervals in polytope face lattices). Let G ⊆ F be faces of a polytope P . Then
the interval

[G,F ] = ({H ∈ L(P ) : G ⊆ H ⊆ F},⊆)

of L(P ) is the face lattice of a polytope of dimension dim(F )− dim(G)− 1.
In particular, if G = ∅, then [G,F ] = L(F ).
In particular, if F = P and G = {v} is a vertex, then [G,F ] = L(P/v).

Proof. The two “in particular” statements follow from Propositions 2.26 and 2.32. Now we can
use induction.

Corollary 2.44 (Diamond property). Any interval [x, y] of length 2 in a polytope face lattice
contains exactly two elements z with x < z < y.

This “harmless lemma” has substantial consequences.

Corollary 2.45. For every polytope, every face is the minimal face containing a certain set of
vertices. (More precisely, every face is the convex hull of the vertices it contains.)
Simultaneously, every face is an intersection of facets (it is the intersection of the facets it is
contained in).

Proof. This says that every element in the face lattice of a polytope is a join of vertices, and a
meet of facets.
This can be phrased and proved entirely in lattice-theoretic language: Take a graded lattice of
rank d + 1 with the diamond property. Then every element of rank r(x) ≤ d is a meet of
elements of rank d− 1 (which would be called “co-atoms”). Simultaneously, every element of
rank r(x) > 0 is a join of elements of rank 1 (which are called “atoms”).
To prove this, note that for an element of rank k ≥ 2 the diamond property shows that it is the
join of two elements of rank k − 1, and by induction those are joins of atoms. Dually for meets
of coatoms.

End of class on October 30

2.2.3 Simple and simplicial polytopes

Definition 2.46. A polytope is simplicial if all its facets are simplices.
A polytope is simple if all its vertex figures are simplices.

Lemma 2.47. A polytope is simplicial if all the proper lower intervals in its face lattice are
boolean.
A polytope is simple if all the proper upper intervals in its face lattice are boolean.
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Thus, in particular, to be simplicial or simple is a “combinatorial” property: It can be told from
the face lattice.
Note that if the set of n > d points V ⊂ Rd is “in general position” in the sense that no d + 1
points lie on a hyperplane, then P = conv(S) is a simplicial d-polytope.

Exercise 2.48. Every polytope that is both simple and simplicial is a simplex, or it has dimen-
sion 2.

2.2.4 V-polytopes and H-polytopes: The representation theorem

Theorem 2.49 (Minkowski–Weyl Representation Theorem). Every d-dimensional polytope in Rd

can be represented in the following equivalent ways:

V-polytope The subset P is given as a convex hull of a finite set V ⊂ Rd:

P = conv(V ).

This representation is unique if V is the set of all vertices of P .

H-polytope The subset P is given as the set of solutions of a finite system of linear inequalities,

P = {x ∈ Rd : Ax ≤ a}.

This representation is unique if the system “Ax ≤ a” consists of one facet-defining linear
inequality for each facet of P . (Uniqueness up to permutation of the inequalities, and up
to taking positive multiples of the facet-defining inequalities.)

Proof. A V-polytope is a special representation of what we have up to now called simply a
polytope. The uniqueness was proven in Proposition 2.25.
Every V-polytope is anH-polytope:
The fact that every V-polytope is the solution of a finite set of inequalities follows from a
procedure called “Fourier–Motzkin elimination”. For this let V = (v1, . . . , vn) ∈ Rd×n. We
write

Pd+n := {
(
x
λ

)
∈ Rd+n : x = λ1v1 + · · ·+ λnvn,

λ1 + · · ·+ λn = 1,

λ1, . . . , λn ≥ 0}

This Pd+n ⊂ Rd+n is clearly an H-polytope (a bounded solution of a linear system of inequal-
ities); indeed, it is an (n− 1)-dimensional simplex, with vertices

(
vi
ei

)
. Furthermore, projection

of Pd+n to Rd by “deleting the last n coordinates” yields P . Thus we simply have to show that
“deleting the last coordinate” maps anH-polytope to anH-polytope.
For this, let π : P ′ → P ′′,

(
x
y

)
7→ x be such a projection map x ∈ Rm, y ∈ R, where P ′ is

given by linear inequalities (and possibly equations). A point x lies in P ′′ if
(
x
y

)
lies in P ′ for

some y. Such an y exists if all the upper bounds for y (which are given by linear inequalites
in the other coordinates) are larger or equal than all the lower bounds for y (which are given
similarly). Thus
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“all upper bounds on y are larger or equal all lower bounds”

yields a new system of inequalities that defines P ′′. (If there are equations fixing y, then those
have to be taken in account as well, and have to be compatible with the inequalities.)
We leave the proof of the uniqueness part for later.

End of class on November 5

EveryH-polyhedron is a V-polyhedron:
For this we prove a similar statement for more general sets: Every subset Q ⊂ Rd that is given
in the form

Q = {x ∈ Rd : Ax ≤ a},

for some A ∈ Rn×d and a ∈ Rn, which we call an H-polyhedron (not necessarily bounded!)
can be written as a V-polyhedron, in the form

Q = conv(V ) + cone(Y ),

where
cone(Y ) = {µ1y1 + · · ·+ µmym : µ1, . . . , µm ≥ 0}

is a conical combination of the vectors in the finite set Y = {y1, . . . , ym} ⊂ Rd.
To prove this, we interpret the set Q as given above as theH-polyhedron

Q̂ = {
(
x
z

)
∈ Rd+n : Ax ≤ z},

intersected with the subspace {
(
x
z

)
∈ Rd+n : z = a}.

This Q̂we write as a V-polyhedron: It is the sum of the linear subspace {
(
x
z

)
∈ Rd+n : Ax = z},

which has a cone basis given by the vectors ±
(
ei
ai

)
, and an orthant {

(
x
z

)
∈ Rd+n : x = 0, z ≥ 0}

spanned as a cone by unit vectors
(
0
ej

)
.

So it suffices to show that the intersection of any V-polyhedron Q̂ with a hyperplane of the form
Hj := {

(
x
z

)
∈ Rd+n : zj = aj} is again a V-polyhedron. So let’s consider

Q̂ = conv(W ) + cone(U) = conv(W+ ∪W− ∪W 0) + cone(U+ ∪ U− ∪ U0),

where we have split the set W into the subsets lying above, on, or below the hyperplane H , and
similarly with U with the hyperplane H0

j := {
(
x
z

)
∈ Rd+n : zj = 0}.

In this case we get lots of points in Q̂ ∩Hj:
• points in W 0,
• intersections of Hj with segments between a point in W+ and one in W−,
• intersections of Hj with rays starting from a point in W+ with direction in U−, and
• intersections of Hj with rays starting from a point in W− with direction in U+.

Let Vj(Q̂) be the set of all these points. Similarly, collect the following directions in Q̂ ∩H0
j :

• directions in U0, and
• directions obtained by a suitable combination of a direction in U+ and one in U−.

Let Rj(Q̂) be the set of all these directions. Then it is clear that

Q̂ ∩Hj ⊃ cone(Vj(Q̂)) + cone(Rj(Q̂)).
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To prove that the converse inclusion “⊆” holds, we have to take any point x ∈ Q̂∩Hj and split
it into contributions coming from the points and rays we have collected. It turns out that this is
equivalent to finding a point in a given transportation polytope – a problem that you will solve
for Problem Set 4. (Details for the computation omitted here. Example done in class.)
EveryH-polytope is a V-polytope:
Thus we have seen that any intersection of anH-polyhedron with a coordinate subspace is also
a V-polyhedron, of the form conv(V ) + cone(Y ). If the intersection is bounded, then clearly
the V-polyhedron is of the form conv(V ), i.e., a V-polytope.

Remark 2.50. Fourier–Motzin elimination is constructive, and not hard to implement. It is
contained in software systems such as PORTA and polymake.
In particular, instead of solving for upper bounds and lower bounds in a variable we want to
eliminate, we just take two inequalities atx ≤ α and btx ≤ β where for some variable xi the
coefficient in one is positive and in the other is negative, say ai > 0 and bi < 0. Then the
positive combination of the two inequalities

[(−bi)at + (ai)b
t]tx ≤ (−bi)α + (ai)β

is also valid, and it does not involve the variable xi any more: This is the elimination step
performed by adding/combining inequalities.
However, the elimination algorithm is also badly exponential: If we are “unlucky”, every step
transforms a system of n inequalities into (n

2
)2 inequalities. So within a few steps the number

of inequalities can “explode”. The result will typically contain many redundant inequalities, but
these are not easy to detect.

2.2.5 Polarity/Duality

Definition 2.51. Let K ⊂ Rd be a subset. Its polar is

K∗ = {y ∈ Rd : ytx ≤ 1 for all x ∈ K}.

Exercise. K∗ = conv(K)∗ = conv(K ∪ {0})∗.

Exercise. Compute and draw K∗ for axis parallel rectangles in the plane with opposite vertices
(i) (0, 0) and (M, 1), for M > 0 large.

(ii) (−ε,−ε) and (M, 1), for M > 0 large, ε > 0 small.
(iii) (ε, ε) and (M, 1), for M > 0 large, ε > 0 small.
What happens for ε→ 0, M →∞?

Lemma 2.52. Let K,L ⊆ Rd be a closed convex set.
(i) 0 ∈ K∗.

(ii) K∗ is closed and convex.
(iii) K ⊆ L implies K∗ ⊇ L∗.
(iv) If 0 ∈ K, then K∗∗ = K.
(v) If 0 ∈ K,L, then K ⊆ L if and only if K∗ ⊇ L∗.

(vi) K is bounded if and only if K∗ has 0 in its interior.
(vii) K∗ is bounded if and only if K has 0 in its interior.
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Proof. Items (i), (ii) and (iii) are easy to see/calculate.
End of class on November 6

For (iv), we have K ⊆ K∗∗ by definition. If z /∈ K, then as K is closed and convex, by the
Separation Theorem there are a vector y 6= 0 and γ ∈ R such that ytx < γ holds for all x ∈ K,
but not for x = z, that is, such that ytz > γ. As 0 ∈ K, we get γ > 0, and after possibly
rescaling we may assume γ = 1. Thus we have that (1) ytx < 1 holds for all x ∈ K, but (2)
ytz > γ. But the first condition says that y ∈ K∗, and thus the second one says that z /∈ K∗∗.
In other words, we have proved that K∗∗ ⊆ K.
(iii) and (iv) together yield (v).
Also (iv) immediately implies (vi) and (vii), asK is bounded if and only ifK ⊆ B(0, R), where
B(0, R) is the ball with center 0 and radius R, for some suitably large R, and similarly K has 0
in the interior if and only if B(0, ε) for a suitably small ε > 0.

Interestingly enough, we get a very explicit description of the polar of a polytope — assuming
that we have both a V- and anH-representation available.

Theorem 2.53 (Polarity for polytopes). Let P be a d-polytope in Rd with 0 in its interior, with

P = conv(V ) = {x ∈ Rd : Ax ≤ 1}

with V ∈ Rd×n and A ∈ Rm×d, that is, a convex hull of n points resp. the solution set of m
inequalities.
Then the polar P ∗ is also a d-polytope with 0 in its interior, and

P ∗ = conv(At) = {y ∈ Rd : V ty ≤ 1}.

Under this correspondence, the vertices of P correspond to the facets of P ∗, and vice versa.
In particular, if the set V was chosen minimal (that is, the set of vertices of P ) and the system
“Ax ≤ 1” was minimal, then Ax ≤ 1 consists of exactly one facet-defining inequality for each
facet of P .

Proof (Part I). For this, read “P = conv(V )” as saying that P is the convex hull of the columns
of V . At the same time, “P = {x ∈ Rd : Ax ≤ 1}” says that P is the polar of the set of columns
of At. With this, everything follows from K∗∗, if we note that the first representation yields that
P is bounded, and the second one implies that 0 is in the interior.

Exercise 2.54. For

P = conv(V ) = {x ∈ Rd : Ax ≤ 1} and P ∗ = conv(At) = {y ∈ Rd : V ty ≤ 1},

describe all the faces of P ∗ in terms of the faces of P — that is, give theH-description of a face
F � of P ∗ in terms of the V-description of P and F , etc.

Theorem 2.55 (Duality for polytopes). Let P be a d-polytope in Rd wit 0 in the interior and let
P ∗ be its polar, then the face lattice L(P ∗) is the “opposite” of L(P ).

Proof. There are two ways to prove this. The “hard way” is to go via Exercise 2.54, and to
describe a precise match between the faces F ⊂ P and “corresponding” faces F � ⊆ P∗.
The easier way goes via the following observation, which plainly says that the incidences be-
tween the vertices and the facets of a polytope already fix the combinatorial type (i.e., the face
lattice).
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Terminology: If L(Q) = L(P )opp, then we say that Q is a dual of P . Note that every polytope
has many duals, but only one polar polytope (if it has 0 in the interior etc.)

Corollary 2.56. A polytope is P is simple if and only if P ∗ is simplicial, and vice versa.

Theorem 2.57. Let P be a d-dimensional polytope with n vertices and m facets.
Then the combinatorial type of P (that is, the face lattice L(P )) is determined by the vertex–
facet incidences, that is, by the matrix

I(P ) = (κij) ∈ {0, 1}n×m,

where κij = 1 if vi ∈ Fj , and κij = 0 otherwise, for some arbitrary labelling v1, . . . , vn of the
vertices and F1, . . . , Fm of the facets.

Proof. The faces are the intersections of facets, and the vertex sets of faces are exactly the
intersections of vertex sets of facets, by Corollaries 2.27 and 2.45.
Thus the vertex sets of facets are given by the rows of the matrix I(P ), and the vertex sets
of faces are exactly the intersections of these rows, which we interpret as incidence vectors of
vertex sets of facets.

End of class on November 12

Lemma 2.58 (Characterization of vertices). Let P = conv(V ) = {x ∈ Rd : Ax ≤ 1}. Then
v0 ∈ Rd is a vertex of P if and only if any one of the following conditions are satisfied:

(i) {v0} is a face of dimension 0, that is, v0 ∈ P but there is an inequality atx ≤ α such that
atv0 = α, while atvi < α for all other vi ∈ V .

(ii) v0 ∈ V , and there is an inequality atx ≤ 1 such that atv0 = 1, while atvi < 1 for all other
vi ∈ V .

(iii) v0 is a point in P such that {v0} is an intersection of some facets of P .
(iv) v0 is a point in P such that {v0} is an intersection of d facet-defining hyperplanes Hi =
{x ∈ Rd : atix = 1} (1 ≤ i ≤ d).

Proof. (i) is the definition of a vertex (0-dimensional face).
(ii): As 0 lies in the interior of P , the inequality from (i) has to have α > 0, so we can rescale to
get α = 1. Also v0 lies in V , otherwise we would have atv < 1 for all v ∈ V and thus atx < 1
for all x ∈ P .
(iii): We know that every face (and thus every vertex) is an intersection of facets. Conversely,
every intersection of facets is a face, and if the face is a single point, it is a vertex.
(iv): If v0 is a vertex, then it is contained in a maximal chain of faces v0 = G0 ⊂ G1 ⊂ Gd−2 ⊂
Gd−1, where Gi is a face of dimension i and Gi = Gi+1 ∩ Fi, where Fi is a facet — since every
face is an intersection of facets. Let Hi = aff(Fi), then we have that Fi ⊂ Hi and Fi = P ∩Hi,
and thus

Gi = Gi+1 ∩ Fi ⊆ Gi+1 ∩Hi ⊆ Gi+1 ∩ P ∩Hi = Gi+1 ∩ Fi,

which yields Gi = Gi+1 ∩Hi. We conclude that each of the intersections Hd−1, Hd−1 ∩Hd−2,
Hd−1 ∩Hd−2 ∩ · · · ∩H0 strictly contains the next one — and thus the last one in the sequence
has dimension 0, it is a single point, namely G0 = {v0}. On the other hand, v0 is then an
intersection of facets, so it is a vertex.
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Lemma 2.59 (Characterization of facets). Let P = conv(V ) = {x ∈ Rd : Ax ≤ 1}. Then
F ⊂ P is a facet of P if and only if any one of the following conditions are satisfied:

(i) F = {x ∈ P : atx = α} for an inequality atx ≤ α that is valid for all of P , with
dim(F ) = d− 1.

(ii) F = {x ∈ P : atx = α} for an inequality atx ≤ α that is valid for all of P , with d
affinely-independent points v1, . . . , vd from the set V that satisfy atvi = 1.

(iii) F = {x ∈ P : atix = 1} for an inequality atix ≤ 1 from the system Ax ≤ 1, with d
affinely-independent points v1, . . . , vd from the set V that satisfy ativj = 1.

Proof. (i) is the definition of a facet.
(ii): Let V0 ⊆ V be the subset of all the vi ∈ V that satisfy the inequality from (i) with equality.
If the affine hull of these points has dimension d− 1, then we can choose d that span this hull.
If the affine hull has smaller dimension, then we note F ⊂ aff(V0), so F is not a facet.
(iii): Here the new information is that the facet-defining inequalities all come from the system
Ax ≤ 1. However, note that the inequality atx ≤ 1 that satisfies atvj = 1 for 1 ≤ j ≤ d is
unique. If it were not in the inequality system, then the barycenter 1

d
(v+1 · · · + vd) would lie in

the interior of the set defined by Ax ≤ 1; on the other hand, it lies on the boundary due to the
inequality atx ≤ 1.

Proof of Theorem 2.53 (Part II). From the characterization Lemma 2.59, we see that the facets
of P are exactly given by the inequalities of the system Ax ≤ 1, under the assumption that the
system was chosen to be minimal.
The assumption that the two systems for P are minimal implies that the systems for P ∗ are also
minimal, otherwise we would get a contradiction to P ∗∗ = P .

Proposition 2.60. The incidence matrix I(P ) may be a rather compact encoding of a polytope,
but it is not so easy to read things off.
(1) To get the dimension d of a polytope from I(P ) we have to find a sequence of columns such

that the first column is arbitrary (corresponding to a facet) and each subsequent one is
chosen to have a maximal intersection with the intersection of the previously-chosen ones,
thus yielding the next face of a maximal chain.

(2) The incidence matrix of the polar is the transpose of the matrix: I(P ∗) = I(P )t.
(3) If dim(P ) = d, then P is simplicial if each column of I(P ) contains exactly d ones.
(4) If dim(P ) = d, then P is simple if each row of I(P ) contains exactly d ones.

Proof of Theorem 2.55. With completing the proof of Theorem 2.53, we get that the vertices of
P correspond to the facets of P ∗, and vice versa. Thus the I(P ∗) is the transpose of I(P ), and
thus L(P ∗) is the opposite of L(P ).

2.2.6 The Farkas lemmas

“The Farkas lemma” is a result that comes in many different flavors; it says that if something
happens in polyhedral combinatorics, then there always is a concrete reason. Here is a basic
version:

Proposition 2.61. A system Ax ≤ a has no solution if and only if there is a vector c ≥ 0 such
that ctA = 0 and cta = −1.
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Proof. The Farkas lemmas can be derived from Separation Theorems, or from each other, or
from Fourier–Motzkin. We sketch Fourier–Motzkin: We can eliminate all the variables from
the system Ax ≤ a, such that the resulting system of inequalities 0 ≤ γi has a solution if
and only if the original system has none. Moreover, all inequalities in the resulting system are
non-negative combinations of the inequalities in the original system.
Thus if the resulting system has no solution, then one inequality ready “0 ≤ γi” for some
γi < 0. Indeed, we may rescale to get γi = −1. The inequality is obtained by non-negative
combination, that is, ctA = 0, cta = γi = −1.
Conversely, check that the existence of c implies that the system has no solution.

End of class on November 13
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3 Polytope theory

3.1 Examples, examples, examples

What do we want to know?
• dimension d
• number of vertices f0 = n, number of facets fd−1
• V- andH-description
• f -vector (f0, f1, . . . , fd−1)
• graph
• simple? simplicial?
• [diameter, surface area, volume? – not so much a topic of this course]
• dual polytope?
• symmetries?
• combinatorial type? incidence matrix?
• face lattice L
• etc.

We will mix a discussion of specific (classes of) examples with a discussion of constructions –
which produce new examples.
Note that the various classes of examples we describe will not be disjoint (example: every
simplex is a pyramid, every cube is a prism, a triangle is both a simplex and a polygon, etc.)

3.1.1 Basic building blocks

Example 3.1 (The (regular) convex polygons). Let P be any 2-dimensional polytope, and n =
f0(P ) its number of vertices. Then n ≥ 3 and f1(P ) = n. Any two 2-polytopes with n vertices
are combinatorially equivalent — and they are in particular equivalent to the regular convex
n-gon given by

P2(n) = conv{(cos( k
n
2π), sin( k

n
2π)) : 0 ≤ k ≤ n}.

This example in particular contains the complete classification of 2-dimensional polytopes.

Example 3.2 (The d-simplex). The standard simplex of Definition 2.17 may be described as

∆d = {(λ1, . . . , λn) ∈ Rd+1, λ0, . . . , λd ≥ 0, λ1 + · · ·+ λd+1 = 1}
= conv{e1, . . . , ed+1}.

This is a d-dimensional polytope in Rd+1. It has d + 1 vertices and d + 1 facets; the k-faces
correspond to the (k + 1)-subsets of [d + 1]. In particular, the face lattice is a boolean algebra
Bd+1, and we get

fk(∆d) =

(
d+ 1

k + 1

)
.

The standard d-simplex has the symmetry group Sd+1, acting by permutation of coordinates
(and thus of vertices).
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A full-dimensional version of the standard simplex is obtained by deleting the last coordinate,

∆′d = {(λ1, . . . , λd) ∈ Rd+1, λ0, . . . , λd ≥ 0, λ1 + · · ·+ λd ≤ 1}
= conv(0, e1, . . . , ed).

This simplex has volume 1
d
. It has a smaller symmetry group than ∆d. We leave it as an exercise

to construct and describe a full-dimensional fully-symmetric realization of ∆d.

Example 3.3 (The d-cube). Again there are two very familiar versions of the d-dimensional
cube, the 0/1-cube

C01
d = conv{0, 1}d = {x ∈ Rd : 0 ≤ xk ≤ d} = [0, 1]d

and the ±1-cube

Cd = conv{1,−1}d = {x ∈ Rd : −1 ≤ xk ≤ d} = [−1, 1]d = {x ∈ Rd : ‖x‖∞ ≤ 1}.

They are equivalent by a similarity transformation.
The non-empty k-faces are obtained by choosing k coordinates which have the full range of
[0, 1] resp. [−1, 1] and fixing the other d− k vertices to the lower or upper bound. In particular,
this yields

fk(Cd) = 2d−k
(
d

k

)
for k ≥ 0, while f−1 = 1. In particular, the d-cube has 3d non-empty faces.
The d-cube is simple.
The symmetry group of Cd is generated by the permutations of coordinates and by the reflec-
tions in coordinate hyperplanes. It has 2dd! elements, and is known as the group of signed
permutations, or as the hyperoctahedral group.

Exercise 3.4. For which k = k(d) does the d-cube have the largest number of k-faces? To
answer this, analyze the quotients fk/fk−1, and show that they decrease with k. Conclude that
the f -vector of the d-cube is unimodal, that is,

f0 < f1 < · · · < fk(d) ≥ fk(d)+1 > · · · > fd−1.

Example 3.5 (The d-dimensional crosspolytope2). The standard coordinates for the d-dimensional
crosspolytope are given by

C∗d = conv{±e1, . . . ,±ed}d

= {x ∈ Rd : ±x1 + · · ·+±xd ≤ 1} = {x ∈ Rd : ‖x‖1 ≤ 1}.

The proper k-faces are obtained by choosing k + 1 coordinates, and a sign for each of them, so

fk(C
∗
d) = 2k+1

(
d

k + 1

)
for k < d, while fd = 1. In particular, the d-crosspolytope has 3d non-empty faces. And
indeed, this is the polar dual of the d-cube, so in particular it has the same number of faces. The
d-crosspolytope is simplicial. Its symmetry group is again the hyperoctahedral group.

2Compare Problem Sheet 2 (Problem 2).
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End of class on November 19

Exercise 3.6 (The Half-cube). Let

Hd := conv{x ∈ {0, 1}d : x1 + · · ·+ xd ∈ 2Z}

be the dth half-cube.
(i) Describe Hd for d ≤ 4.

(ii) Describe the facets of Hd: How many are they, what are their combinatorial types?
(The cases d = 1, 2, 3 need to be argued separately.)

(iii) Give anH-representation of Hd.
(The cases d = 1, 2, 3 need to be argued separately.)

(iv) Show that Hd is “3-simplicial,” that is, all its 3-faces are tetrahedra.
(v) Show that Hd is simplicial for d ≤ 4, but not for d > 4.

3.1.2 Some basic constructions

Proposition 3.7 (Product3). Let P ⊂ Rd and Q ⊂ Re be polytopes, then the product

P ×Q ⊂ Rd+e

is a polytope of dimension dim(P )+dim(Q). Its non-empty faces are the products of non-empty
faces of P and of Q. Thus the product construction is combinatorial: the face lattice of P ×Q
can be derived from the face lattices of P and of Q. In particular,

fk(P ×Q) =
k∑
i=0

fi(P )fk−i(Q) for k ≥ 0.

P ×Q is simple if and only if P and Q are simple.
P×Q is never simplial, unless one of P andQ is 0-dimensional, or they are both 1-dimensional
(and P ×Q is a quadrilateral).

Example 3.8 (Prisms). Let P ⊂ Rd be a polytope. If I is an interval (that is, a 1-dimensional
polytope, such as I = [0, 1] or I = [−1, 1]), then the product P × I ⊂ Rd+1 is a prism over P .
Then dim(P × I) = dim(P ) + 1. The non-empty faces of the prism P × I for I = [0, 1] are
• the faces of the base P × {0}, which is isomorphic to P ,
• the faces of the top P × {1}, which is also isomorphic to P ,
• the vertical faces of the form P × I , where every non-empty k-face of P corresponds to

a unique vertical (k + 1)-face of P .
This also yields a drawing of the face lattice of P .

Note: the d-cube, d > 0, is an iterated prism.

Exercise 3.9. Define the f -polynomial of a d-polytope as

fP (t) := 1 + f0t+ f1t
2 + · · ·+ fd−1t

d + td+1.

3Compare Problem Sheet 2 (Problem 1).
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(a) Describe the f -polynomial fP×I of the prism P × I in terms of the f -polynomial of P .
Deduce from this a formula for the f -polynomial of the d-cube.

(b) Describe the f -polynomial of P ∗ in terms of the polynomial of P . Deduce from this a
formula for the f -polynomial of the d-crosspolytope.

(c) Describe the f -polynomial of P ×Q in terms of the polynomials of P and of Q.

Proposition 3.10 (Direct sum4). Let P ⊂ Rd and Q ⊂ Re be polytopes with the origin in the
interior, then

P ⊕Q := conv(P × {0} ∪ {0} ×Q) ⊂ Rd+e

is a polytope of dimension dim(P ) + dim(Q).
Its proper faces are all of the form F ∗ G := conv(F × {0} ∪ {0} × G), where F ⊂ P and
G ⊂ Q are proper faces, and dim(F ∗G) = dim(F ) + dim(G) + 1.
In particular the direct sum is combinatorial.

Example 3.11 (Bipyramids). If P is a polytope, then P ⊕ I is a bipyramid over P : It has
dimension dim(P ) + 1, f0(P ) + 2 vertices, 2fdim(P )−1 facets, etc.
For example, the d-crosspolytope is an (iterated) bipyramid.

Proposition 3.12. Product and direct sum are dual constructions: If P ⊂ Rd and Q ⊂ Re are
polytopes with the origin in the interior, then

(P ×Q)∗ = P ∗ ⊕Q∗.

Example 3.13 (A neighborly polytope). The direct sum ∆2⊕∆2 [constructed from two triangles
with the origin in the interior] is neighborly: This is a 4-dimensional polytope with f0 = 6
vertices such that any two vertices are joined by an edge. In particular, f1(∆2 ⊕∆2) =

(
f0
2

)
=(

6
2

)
= 15.

End of class on November 20

Proposition 3.14 (Joins). Let P ⊂ Rd and Q ⊂ Re be polytopes, then the join

P ∗Q := conv
({x0

0

 : x ∈ P
}
∪
{0

y
1

 : y ∈ Q
})
⊂ Rd+e+1

is a polytope of dimension dim(P ) + dim(Q) + 1.
Its faces are the joins of the faces of P and the faces of Q. Thus the join construction is
combinatorial: the face lattice of P ×Q can be derived from the face lattices of P and of Q —
it is simply the product,

L(P ∗Q) ∼= L(P )× L(Q).

In particular,
fk(P ∗Q) =

∑
i

fi(P )fk−i−1(Q) for all k.

P ∗ Q is neither simple nor simplicial, except if both P and Q are simplices, or if one them is
empty and the other one is simple resp. simplicial.

4Compare Problem Sheet 5 (Problem 1).
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Example 3.15 (Pyramids). P ∗ {v} is the pyramid over P .

Remark 3.16. We are usually interested in polytopes only up to affine transformations. Thus we
perform constructions such as products, direct sums, and joins in more generality than the one
indicated above. Also, often P and Q lie in the same higher-dimensional vector space, and we
want to see their product/join/direct sum in the same space:
• If P,Q lie in transversal affine subspaces of a real vectorspace V ∼= RN , e.g. P ⊂ V ′,
Q ⊂ V ′′, V ′ ∩ V ′′ = {p}, then

{x+ y : x ∈ P, y ∈ Q}

is (affinely equivalent to) the product of P and Q.
• If P,Q lie in transversal affine subspaces V ′ resp. V ′′ of V , where V ′ ∩ V ′′ is a relative

interior point of P and of Q, then
conv(P ∪Q)

is (affinely equivalent to) the direct sum of P and Q.
• If P,Q lie in skew subspaces of V , then

conv(P ∪Q)

is (affinely equivalent to) the join of P and Q.

Proof. . . . left as an exercise. It helps to know the definitions, e.g. the following . . .

Definition (Reminder from Lemma 2.40: Affine equivalence, a.k.a. affinely isomorphic). Affine
maps between vector spaces V and W are maps that satisfy f(λx + (1− λ)y = λf(x) + (1−
λ)f(y); they have the form f(x) = Ax+ b for a suitable matrix A and vector b.
Two polytopes P ⊂ V and Q ⊂ W are affinely equivalent if there is an affine map f : V → W
such that f(P ) = Q, where f : P → Q is a bijection. (Note that this does not require that
f : V → W is a bijection – f does not need to be injective or surjective.)
Affine equivalence is an equivalence relation. In particular, affinely equivalent polytopes are
combinatorially equivalent (for this, recall Lemma 2.40.)

Exercise 3.17. Show that the join construction is self-dual,

(P ∗Q)∗ ∼= (P ∗ ∗Q∗).

How do you have to interpret/adapt the notations/constructions to make this true?

Exercise 3.18. In Rd, what is the smallest example of a polytope that is not (combinatorially
equivalent to) a join, a product or a direct sum? After you have answered that: How did you
interpret “smallest”?

Example 3.19 (The Hanner polytopes/The 3d conjecture). The Hanner polytopes are defined as
all polytopes that can be generated from [−1,+1] by repeatedly applying products, direct sums,
and polarity. This includes the d-dimensional cube and the d-dimensional cross polytope, but
many more polytopes. (For example, a prism over an octahedron.)
All d-dimensional Hanner polytopes are centrally symmetric, and they have exactly 3d+1 faces
(equivalently: 3d non-empty faces; equivalently: 3d proper faces).
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The 3d Conjecture (by Gil Kalai, 1988 [2]) says that every centrally-symmetric d-polytope has
at least 3d + 1 faces, and that in the case of equality it is (equivalent to) a Hanner polytope.
Up to now, this is proved only for d ≤ 4; see Sanyal, Werner & Ziegler [3].

End of class on November 26

3.1.3 Stacking, and stacked polytopes

Definition 3.20 (Stacking). Let P be a polytope and F a facet. Stacking a pyramid onto a
facet F yields a polytope

P ′ := conv(P ∪ {v0}) = P ∪ conv(F ∪ {v0})

with a new vertex v0 such that all such that all proper faces of P , except for F , are also facets
of conv(P ∪ {v0})

Lemma 3.21. Let P be a d-polytope, and F ⊂ P a facet.
The proper faces of P ′ := Stack(P, F ) are
– all proper faces of P , except for F , and
– the pyramids conv(G ∪ v0), for all proper faces G ⊂ F .
The f -vector of P ′ is hence

fi(P
′) =

{
fi(P ) + fi−1(F ) for i < d− 1

fd−1(P ) + fd−2(F )− 1 for i = d− 1.

Definition 3.22 (Beneath/beyond). Let P ⊂ Rd be a d-polytope, and F ⊂ P a facet.
A point v /∈ P lies beneath the facet F if v and the interior of P lie on the same side of the
hyperplane HF spanned by F .
A point v /∈ P lies beyond the facet F if v and the interior of P lie on different sides of the
hyperplane HF spanned by F .

Thus “stacking onto a facet F ” describes the situation when a new point/vertex lies beyond one
particular facet F ⊂ P and beneath all other facets of P .

Exercise 3.23. Let P ⊂ Rd be a d-polytope, and F ⊂ P a facet. Let v1, . . . , vn be the vertices
of P , and assume that v1, . . . , vm for some m < n are the vertices of F .
Show that

(1− λ) 1
n
(v1 + · · ·+ vn) + λ 1

m
(v1 + · · ·+ vm)

– for λ = 0 is a point in the interior of P ,
– for λ = 1 is a point in the relative interior of F ,
– for λ > 1 is a point beyond F , which lies beneath all other facets of P if λ is small enough

(but larger than 1).

Definition 3.24. A d-dimensional stacked polytope Stackd(d + 1 + n) on d + 1 + n vertices,
for n ≥ 0, is obtained from a d-simplex ∆d ⊂ Rd by repeating the operation “stacking onto a
facet” n times.
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Exercise 3.25. Show that for d ≥ 3 and sufficiently large n, there are different combinatorial
types of stacked d-polytopes on d+ 1 + n vertices.
Discuss how the combinatorial type of Stackd(d+ 1 + n) can be described in terms of a (graph
theoretical) tree. Do different trees describe different polytopes? Do different stacked polytopes
have different trees?
Use this to estimate the number of different stacked polytopes Stackd(d+ 1 +n) for some fixed
d ≥ 3 and large n.

Proposition 3.26. The f -vector of Stackd(d+ 1 + n) is

fi(Stackd(d+ 1 + n)) =

{(
d+1
i+1

)
+ n
(
d
i

)
for i < d− 1

d+ 1 + n(d− 1) for i = d− 1.

Exercise 3.27. Compute and sketch the f -vector of the stacked polytope Stack10(42). In par-
ticular, how many facets does it have? Which is the largest entry of the f -vector?

Proposition 3.28. The stacked polytope Stack3(8) obtained by stacking onto all 4 facets of a
tetrahedron cannot be realized with all vertices on a sphere, so it is not inscribable.

Proof. Stereographic projection from a tetrahedron vertex, and then an angle count in the re-
sulting Delaunay triangulation. See Gonska & Ziegler [1]. (Delaunay triangulations will be
discussed later.)

End of class on November 27

30


	Introduction
	Some highlights to start with
	Point configurations
	Polytopes
	Sphere configurations/packings/tilings

	Basic structures in discrete geometry
	Convex sets, intersections and separation
	Convex sets
	Operations on convex sets
	Convex hulls, Radon's lemma and Helly's theorem
	Separation theorems and supporting hyperplanes

	Polytopes
	Faces
	Order theory and the face lattice
	Simple and simplicial polytopes
	V-polytopes and H-polytopes: The representation theorem
	Polarity/Duality
	The Farkas lemmas


	Polytope theory
	Examples, examples, examples
	Basic building blocks
	Some basic constructions
	Stacking, and stacked polytopes
	Cyclic polytopes
	Combinatorial optimization and 0/1-Polytopes
	Centrally symmetric polytopes; very symmetric polytopes

	Three-dimensional polytopes and Steinitz' Theorem
	Circle packings
	Steinitz' Theorem

	The graph, Balinski's Theorem, and the Lower Bound Theorem
	Graph diameters, and the Hirsch (ex-)conjecture
	Shellability, f-vectors, and the Descartes–Euler–Poincaré equation
	Dehn–Sommerville, Upper Bound Theorem, and the g-Theorem

	More Discrete Geometry
	Polyhedral complexes
	Subdivisions and triangulations (including Delaunay and Voronoi)
	Configurations of points, hyperplanes, and subspaces

	Combinatorial geometry / Geometric combinatorics
	Arrangements of points and lines: Sylvester-Gallai, Erdos–Szekeres
	Szemerédi–Trotter
	Arrangements of hyperplanes
	Regular polytopes and reflection groups
	zonotopes and zonotopal tilings
	A challenge problem: simplicial line arrangements

	Geometry of linear programming
	Linear programs
	The simplex algorithm
	LP-duality and applications

	Discrete Geometry perspectives

