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a restricted model of homology theory called simplicial homology, before plunging

into the general theory, known as singular homology. After the definition of singular

homology has been assimilated, the real work of establishing its basic properties be-

gins. This takes close to 20 pages, and there is no getting around the fact that it is a

substantial effort. This takes up most of the first section of the chapter, with small

digressions only for two applications to classical theorems of Brouwer: the fixed point

theorem and ‘invariance of dimension.’

The second section of the chapter gives more applications, including the ho-

mology definition of Euler characteristic and Brouwer’s notion of degree for maps

Sn→Sn . However, the main thrust of this section is toward developing techniques

for calculating homology groups efficiently. The maximally efficient method is known

as cellular homology, whose power comes perhaps from the fact that it is ‘homology

squared’ — homology defined in terms of homology. Another quite useful tool is

Mayer–Vietoris sequences, the analog for homology of van Kampen’s theorem for the

fundamental group.

An interesting feature of homology that begins to emerge after one has worked

with it for a while is that it is the basic properties of homology that are used most

often, and not the actual definition itself. This suggests that an axiomatic approach

to homology might be possible. This is indeed the case, and in the third section of

the chapter we list axioms which completely characterize homology groups for CW

complexes. One could take the viewpoint that these rather algebraic axioms are all that

really matters about homology groups, that the geometry involved in the definition of

homology is secondary, needed only to show that the axiomatic theory is not vacuous.

The extent to which one adopts this viewpoint is a matter of taste, and the route taken

here of postponing the axioms until the theory is well-established is just one of several

possible approaches.

The chapter then concludes with three optional sections of Additional Topics. The

first is rather brief, relating H1(X) to π1(X) , while the other two contain a selection

of classical applications of homology. These include the n dimensional version of the

Jordan curve theorem and the ‘invariance of domain’ theorem, both due to Brouwer,

along with the Lefschetz fixed point theorem.

The Idea of Homology

The difficulty with the higher homotopy groups πn is that they are not directly

computable from a cell structure as π1 is. For example, the 2-sphere has no cells in

dimensions greater than 2, yet its n dimensional homotopy group πn(S
2) is nonzero

for infinitely many values of n . Homology groups, by contrast, are quite directly

related to cell structures, and may indeed be regarded as simply an algebraization of

the first layer of geometry in cell structures: how cells of dimension n attach to cells

of dimension n− 1.
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Let us look at some examples to see what the idea is. Consider the graph X1 shown

in the figure, consisting of two vertices joined by four edges.

When studying the fundamental group of X1 we consider
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loops formed by sequences of edges, starting and ending

at a fixed basepoint. For example, at the basepoint x , the

loop ab−1 travels forward along the edge a , then backward

along b , as indicated by the exponent −1. A more compli-

cated loop would be ac−1bd−1ca−1 . A salient feature of the

fundamental group is that it is generally nonabelian, which both enriches and compli-

cates the theory. Suppose we simplify matters by abelianizing. Thus for example the

two loops ab−1 and b−1a are to be regarded as equal if we make a commute with

b−1 . These two loops ab−1 and b−1a are really the same circle, just with a different

choice of starting and ending point: x for ab−1 and y for b−1a . The same thing

happens for all loops: Rechoosing the basepoint in a loop just permutes its letters

cyclically, so a byproduct of abelianizing is that we no longer have to pin all our loops

down to a fixed basepoint. Thus loops become cycles, without a chosen basepoint.

Having abelianized, let us switch to additive notation, so cycles become linear

combinations of edges with integer coefficients, such as a − b + c − d . Let us call

these linear combinations chains of edges. Some chains can be decomposed into

cycles in several different ways, for example (a − c) + (b − d) = (a − d) + (b − c) ,
and if we adopt an algebraic viewpoint then we do not want to distinguish between

these different decompositions. Thus we broaden the meaning of the term ‘cycle’ to

be simply any linear combination of edges for which at least one decomposition into

cycles in the previous more geometric sense exists.

What is the condition for a chain to be a cycle in this more algebraic sense? A

geometric cycle, thought of as a path traversed in time, is distinguished by the prop-

erty that it enters each vertex the same number of times that it leaves the vertex. For

an arbitrary chain ka + ℓb +mc + nd , the net number of times this chain enters y
is k + ℓ +m + n since each of a , b , c , and d enters y once. Similarly, each of the

four edges leaves x once, so the net number of times the chain ka + ℓb +mc + nd
enters x is −k− ℓ−m−n . Thus the condition for ka+ ℓb+mc +nd to be a cycle

is simply k+ ℓ +m+n = 0.

To describe this result in a way that would generalize to all graphs, let C1 be the

free abelian group with basis the edges a,b, c, d and let C0 be the free abelian group

with basis the vertices x,y . Elements of C1 are chains of edges, or 1 dimensional

chains, and elements of C0 are linear combinations of vertices, or 0 dimensional

chains. Define a homomorphism ∂ :C1→C0 by sending each basis element a,b, c, d
to y−x , the vertex at the head of the edge minus the vertex at the tail. Thus we have

∂(ka + ℓb +mc + nd) = (k + ℓ +m + n)y − (k + ℓ +m + n)x , and the cycles are

precisely the kernel of ∂ . It is a simple calculation to verify that a−b , b−c , and c−d
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form a basis for this kernel. Thus every cycle in X1 is a unique linear combination of

these three most obvious cycles. By means of these three basic cycles we convey the

geometric information that the graph X1 has three visible ‘holes,’ the empty spaces

between the four edges.

Let us now enlarge the preceding graph X1 by attaching a 2 cell A along the

cycle a − b , producing a 2 dimensional cell complex X2 . If
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we think of the 2 cell A as being oriented clockwise, then

we can regard its boundary as the cycle a− b . This cycle is

now homotopically trivial since we can contract it to a point

by sliding over A . In other words, it no longer encloses a

hole in X2 . This suggests that we form a quotient of the

group of cycles in the preceding example by factoring out

the subgroup generated by a − b . In this quotient the cycles a − c and b − c , for

example, become equivalent, consistent with the fact that they are homotopic in X2 .

Algebraically, we can define now a pair of homomorphisms C2
∂2!!!!!!!!!!!!→ C1

∂1!!!!!!!!!!!!→ C0

where C2 is the infinite cyclic group generated by A and ∂2(A) = a − b . The map

∂1 is the boundary homomorphism in the previous example. The quotient group we

are interested in is Ker ∂1/ Im ∂2 , the kernel of ∂1 modulo the image of ∂2 , or in other

words, the 1 dimensional cycles modulo those that are boundaries, the multiples of

a−b . This quotient group is the homology group H1(X2) . The previous example can

be fit into this scheme too by taking C2 to be zero since there are no 2 cells in X1 ,

so in this case H1(X1) = Ker ∂1/ Im ∂2 = Ker ∂1 , which as we saw was free abelian on

three generators. In the present example, H1(X2) is free abelian on two generators,

b − c and c − d , expressing the geometric fact that by filling in the 2 cell A we have

reduced the number of ‘holes’ in our space from three to two.

Suppose we enlarge X2 to a space X3 by attaching a second 2 cell B along the

same cycle a−b . This gives a 2 dimensional chain group C2
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consisting of linear combinations of A and B , and the bound-

ary homomorphism ∂2 :C2→C1 sends both A and B to a−b .

The homology group H1(X3) = Ker ∂1/ Im ∂2 is the same as

for X2 , but now ∂2 has a nontrivial kernel, the infinite cyclic

group generated by A−B . We view A−B as a 2 dimensional

cycle, generating the homology group H2(X3) = Ker ∂2 ≈ Z .

Topologically, the cycle A − B is the sphere formed by the cells A and B together

with their common boundary circle. This spherical cycle detects the presence of a

‘hole’ in X3 , the missing interior of the sphere. However, since this hole is enclosed

by a sphere rather than a circle, it is of a different sort from the holes detected by

H1(X3) ≈ Z×Z , which are detected by the cycles b − c and c − d .

Let us continue one more step and construct a complex X4 from X3 by attaching

a 3 cell C along the 2 sphere formed by A and B . This creates a chain group C3
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generated by this 3 cell C , and we define a boundary homomorphism ∂3 :C3→C2

sending C to A − B since the cycle A − B should be viewed as the boundary of C
in the same way that the 1 dimensional cycle a − b is the boundary of A . Now we

have a sequence of three boundary homomorphisms C3
∂3!!!!!!!!!!!!→C2

∂2!!!!!!!!!!!!→C1
∂1!!!!!!!!!!!!→C0 and

the quotient H2(X4) = Ker ∂2/ Im ∂3 has become trivial. Also H3(X4) = Ker ∂3 = 0.

The group H1(X4) is the same as H1(X3) , namely Z×Z , so this is the only nontrivial

homology group of X4 .

It is clear what the general pattern of the examples is. For a cell complex X one

has chain groups Cn(X) which are free abelian groups with basis the n cells of X ,

and there are boundary homomorphisms ∂n :Cn(X)→Cn−1(X) , in terms of which

one defines the homology group Hn(X) = Ker ∂n/ Im ∂n+1 . The major difficulty is

how to define ∂n in general. For n = 1 this is easy: The boundary of an oriented

edge is the vertex at its head minus the vertex at its tail. The next case n = 2 is also

not hard, at least for cells attached along cycles that are simply loops of edges, for

then the boundary of the cell is this cycle of edges, with the appropriate signs taking

orientations into account. But for larger n , matters become more complicated. Even

if one restricts attention to cell complexes formed from polyhedral cells with nice

attaching maps, there is still the matter of orientations to sort out.

The best solution to this problem seems to be to adopt an indirect approach.

Arbitrary polyhedra can always be subdivided into special polyhedra called simplices

(the triangle and the tetrahedron are the 2 dimensional and 3 dimensional instances)

so there is no loss of generality, though initially there is some loss of efficiency, in

restricting attention entirely to simplices. For simplices there is no difficulty in defin-

ing boundary maps or in handling orientations. So one obtains a homology theory,

called simplicial homology, for cell complexes built from simplices. Still, this is a

rather restricted class of spaces, and the theory itself has a certain rigidity that makes

it awkward to work with.

The way around these obstacles is to step back from the geometry of spaces

decomposed into simplices and to consider instead something which at first glance

seems wildly more complicated, the collection of all possible continuous maps of

simplices into a given space X . These maps generate tremendously large chain groups

Cn(X) , but the quotients Hn(X) = Ker ∂n/ Im ∂n+1 , called singular homology groups,

turn out to be much smaller, at least for reasonably nice spaces X . In particular, for

spaces like those in the four examples above, the singular homology groups coincide

with the homology groups we computed from the cellular chains. And as we shall

see later in this chapter, singular homology allows one to define these nice cellular

homology groups for all cell complexes, and in particular to solve the problem of

defining the boundary maps for cellular chains.


