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*Exercise 4: Examples of Categories

(a) Let G be a monoid (with a neutral element). Show that the following con-

struction gives a category C. Let obj C = {∗}, hence consist of one element.

Define hom(∗, ∗) = G and define the composition by group multiplication. This

example shows that morphisms need not be functions.

Solution:

◦ We have a class of homomorphisms for every object (there is only the

object ∗) and a composition law defined by the group-operation.

◦ The families of homomorphisms are clearly pairwise disjoint, since there is

only one such family.

◦ The composition law is associative, since the group-operation is associative.

◦ The identity morphism 1∗ in hom(∗, ∗) is given by the neutral element

e ∈ G since it satisfies eg = ge for all g ∈ G = hom(∗, ∗).
(b) Given a category C, show that the following construction gives a category M,

called a morphism category. The objects of M are the morphisms of C. Next,

if f, g ∈ objM such that f ∈ hom(A,B) and g ∈ hom(C,D), then a morphism

in hom(f, g) is a pair (h, k) of morphisms in C such that the diagram

A
f
//

h
��

B

k
��

C g
// D

is well-defined and commutes. Define the composition coordinate-wise, that is,

(h′, k′) ◦ (h, k) = (h′ ◦ h, k′ ◦ k).
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Solution:

◦ We have a set of morphisms for every object and a composition law for

any two morphisms (as defined on the sheet).

◦ We regard a morphism (h, k) together with its “source”, and “target”. In

other words: if (h, k) ∈ homM(f, g), then as in the case of the category C,
(h, k) is not only given by the objects A,B,C,D and C-morphisms h, k,

but also by the source object f and the target object g. The fact that the

morphism-classes in M are disjoint follows immediately from this fact.

◦ The composition law in M is associative, since the composition law in C
is associative.

◦ Given an object f ∈ obj(M) with f ∈ homC(A,B) the identity in homM(f, f)

is given by idf := (idA,A, idB,B), where idA,A ∈ homC(A,A) is the identity.

◦ Given f ∈ obj(M) such that f ∈ homC(A,B), then idf ◦(h, k) = (idA ◦h, idB ◦k) =

(h, k) for all (h, k) ∈ hom(e, f) and all e ∈ obj(M). And (h′, k′)◦idf = (h′◦
idA, k

′ ◦ idB) = (h′, k′) for every (h′, k′) ∈ hom(f, g) and all g ∈ obj(M).

(c) Let G be a group and let C be the category associated to it in part (a). If H is a

normal subgroup of G, define a relation by x ∼ y if and only if xy−1 ∈ H. Show

that ∼ leads to an equivalence on the category C and that for the corresponding

quotient category C ′ we have [∗, ∗] = G/H.

Solution:

◦ Let f ∈ homC(∗, ∗) and f ∼ f ′, then f ′ ∈ homC(∗, ∗), since there is only

one set of morphisms.

◦ Let f ∼ f ′ and g ∼ g′ and let gf exist. Then (gf)(g′f ′)−1 = gff ′−1g′−1 ∈
H since ff ′−1 ∈ H and H is a normal subgroup of G.

◦ Next we will show that the set of morphisms [∗, ∗] in C ′, the quotient

category, is equal to G/H. By definition [∗, ∗] = {[f ] : f ∈ homC(∗, ∗)}.
The set on the right hand side is precisely the set of all cosets of H in G

and hence [∗, ∗] = G/H.
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*Exercise 5: Examples of Functors

(a) Given a category C, prove that for a fixed object M ∈ obj C, the mapping

that sends A ∈ obj C to Hom(M,A) = hom(M,A) respectively Hom(A,M) =

hom(A,M) is a covariant respectively contravariant functor from C to the cat-

egory Sets. To prove this, first define f 7−→ Hom(M, f) and f 7−→ Hom(f,M)

for f ∈ homC(A,B) and A,B ∈ obj C in a suitable way.

Solution of (a):

Let (C) be a category and let M ∈ obj(C) be a fixed object.

Part 1: Show that A 7−→ hom(M,A) for A ∈ obj(C) defines a covariant functor

from C to Sets.

(i) If A ∈ obj(C), then Hom(M,A) is a set by definition of the category C.
(ii) Given f ∈ homC(A,A

′) for A,A′ ∈ obj(C), define

Hom(M, f) ∈ homSets(HomC(M,A),HomC(M,A′)) by

Hom(M, f)(g) := f ◦ g for g ∈ homC(M,A).

(iii) Let f ∈ homC(A,B) and f ′ ∈ homC(B,C) for A,B,C ∈ obj(C). Then:

Hom(M, f ◦f ′)(g) = (f ′◦f)◦g = f ′◦(f ◦g) = Hom(M, f ′)◦Hom(M, f)(g)

for g ∈ homC(A,B)

(iv) Given A ∈ obj(C), then Hom(M, 1A)(g) = 1A◦g = g for all g ∈ homC(A,A).

Part 2: Show that A 7−→ hom(A,M) for A ∈ obj(C) defines a contravariant

functor from C to Sets.

(i) If A ∈ obj(C), then Hom(A,M) is a set by definition of the category C.
(ii) Given f ∈ homC(A,A

′) for A,A′ ∈ obj(C), define

Hom(f,M) ∈ homSets(HomC(A
′,M),HomC(A,M)) by

Hom(f,M)(g) := g ◦ f for g ∈ homC(A
′,M).

(iii) as in Part 1 (iii) “with arrows reversed”.

(iv) as in Part 1 (iv) “with arrows reversed”.

(b) In the above setting for C = Groups and C ∈ C and g ∈ homC(B,C), let

0 // A
f
// B

g
// C // 0.

be an exact sequence1 of groups. In the following we assume that both Hom

functors are functors from Groups to Groups. In order to speak of exact

sequences we need the target category to be a so-called abelian category. Show

1If “kernel” and “image” are well-defined in a category, then an exact sequence in that category

is a sequence of objects and morphisms such that for each morphism its image is equal to the

kernel of the next morphism.
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that

(i) 0 // Hom(M,A)
Hom(M,f)

// Hom(M,B)
Hom(M,g)

// Hom(M,C)

is exact.

(ii) Hom(A,M) Hom(B,M)
Hom(f,M)
oo Hom(C,M)

Hom(g,M)
oo 0oo

is exact.

Note that the above shows that both Hom-functors are left-exact.

Solution of (b):

Proof of (i):

(1) We first show that ker(Hom(M, f)) is trivial. Let h ∈ Hom(M,A) such that

Hom(M, f)(h) = f ◦h = 0. Assume that h 6= 0, then there is some x ∈M such

that h(x) 6= 0. Hence f(g(x)) = 0 is contradicting that ker(f) = 0.

(2) We now show that im(Hom(M, f)) = ker(Hom(M, g)) holds.

“⊆“: Let h ∈ im(Hom(M, f)), then h = f ◦h′ for some h′ ∈ Hom(M,A). Hence

Hom(M, g)(h) = g ◦ h = g ◦ f ◦ h′ = 0, by the exactness of

0 // A
f
// B

g
// C // 0. (∗)

“⊇“: Let h′ ∈ ker(Hom(M, g)), then Hom(M, g)(h′) = g ◦ h′ = 0. Then

g(h′(x)) = 0 for all x ∈ M . By the exactness of (∗) choose for every x ∈ M

a y ∈ A such that f(y) = h′(x). This defines a map h : M −→ A. It is a

homomorphism because h′ is a homomorphism. Also Hom(M, f)(h) = h′.

Proof of (ii):

(1) We first show that ker(Hom(g,M)) is trivial. So let h ∈ Hom(C,M) such

that Hom(g,M)(h) = h ◦ g = 0. Assume that h 6= 0, then there is some x ∈ C

such that h(x) 6= 0. Hence h(g(x)) = 0 is contradicting that ker(g) = 0.

(2) We now show that im(Hom(g,M)) = ker(Hom(f,M)) holds.

“⊆“: Let h ∈ im(Hom(g,M)), then h = h′ ◦ g for some h′ ∈ Hom(C,M). Hence

Hom(f,M)(h) = h ◦ f = h′ ◦ g ◦ f = 0 by the exactness of (∗).
“⊇“: Let h′ ∈ ker(Hom(f,M)), then Hom(f,M)(h′) = h′ ◦ f = 0. Then

h′(f(x)) = 0 for all x ∈M . By the exactness of (∗) define the map h : C −→M

as h = h′◦g−1. This h is a well-defined homomorphism since im(g) = ker(0) = C

and Hom(g,M)(h) = h′ ◦ g−1 ◦ g = h′ holds.

(c) For an abelian group G let TG be its torsion subgroup.

(i) Show that G
t7−→ TG defines a functor from Ab −→ Ab if we define
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t(f) := f |TG (restriction) for every f ∈ hom(G,H) for G,H ∈ Ab.

(ii) Show that if f is injective, then t(f) is injective. Phrase this in terms of

“exactness of funtors”.

(iii) Show that f surjective does not imply t(f) surjective. Phrase this in terms

of “exactness of funtors”.

Solution of (c):

Part (i):

◦ Certainly TG is an abelian group for any abelian group G.

◦ Let f : G −→ G′ be a homomorphism of groups, then t(f) := f |TG. Given

an element a ∈ TG, f will map it to an element of finite order, hence

f(a) ∈ TG′ and t(f) is well-defined.

◦ Let G
f−→ G′

g−→ G′′ be two homomorphisms of abelian groups, then

t(g ◦ f) = t(g) ◦ t(f) by associativity of the composition of group homo-

morphisms.

◦ Let G be an abelian group and id : G −→ G be the identity on G, then

t(id) : TG −→ TG is the identity on TG.

Part (ii):

◦ Let f : G −→ G′ be a homomorphism of abelian groups s.t. ker(f) = 0.

Assume there is an x ∈ TG s.t. t(f)(x) = 0. This implies that f(x) = 0

and hence x = 0. Hence ker(t(f)) = 0.

◦ 0 −→ G −→ G′ exact implies that 0 −→ TG −→ TG′ is exact.

Part (iii):

Let f : Z −→ Z/2 be given by f(1) = 1. This is easily seen to be a ho-

momorphism of abelian groups. Also it is surjective. We have t(Z) = 0 and

t(Z/2) = Z/2, hence t(f) : 0 −→ Z/2 is the inclusion which is not surjective.
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