Prof. Pavle Blagojević
Albert Haase
Prof. Holger Reich

Arbeitsgruppe Algebraische Topologie

Topologie II - Exercise Sheet 1

Date of assignment: Wednesday, Oct. 15, 2014.

*Exercise 4: Examples of Categories

(a) Let G be a monoid (with a neutral element). Show that the following construction gives a category \mathcal{C}. Let obj $\mathcal{C}=\{*\}$, hence consist of one element. Define $\operatorname{hom}(*, *)=G$ and define the composition by group multiplication. This example shows that morphisms need not be functions.

Solution:

- We have a class of homomorphisms for every object (there is only the object *) and a composition law defined by the group-operation.
- The families of homomorphisms are clearly pairwise disjoint, since there is only one such family.
- The composition law is associative, since the group-operation is associative.
- The identity morphism $\mathbb{1}_{*}$ in $\operatorname{hom}(*, *)$ is given by the neutral element $e \in G$ since it satisfies $e g=g e$ for all $g \in G=\operatorname{hom}(*, *)$.
(b) Given a category \mathcal{C}, show that the following construction gives a category \mathcal{M}, called a morphism category. The objects of \mathcal{M} are the morphisms of \mathcal{C}. Next, if $f, g \in \operatorname{obj} \mathcal{M}$ such that $f \in \operatorname{hom}(A, B)$ and $g \in \operatorname{hom}(C, D)$, then a morphism in $\operatorname{hom}(f, g)$ is a pair (h, k) of morphisms in \mathcal{C} such that the diagram

is well-defined and commutes. Define the composition coordinate-wise, that is, $\left(h^{\prime}, k^{\prime}\right) \circ(h, k)=\left(h^{\prime} \circ h, k^{\prime} \circ k\right)$.

Solution:

- We have a set of morphisms for every object and a composition law for any two morphisms (as defined on the sheet).
- We regard a morphism (h, k) together with its "source", and "target". In other words: if $(h, k) \in \operatorname{hom}_{\mathcal{M}}(f, g)$, then as in the case of the category \mathcal{C}, (h, k) is not only given by the objects A, B, C, D and \mathcal{C}-morphisms h, k, but also by the source object f and the target object g. The fact that the morphism-classes in \mathcal{M} are disjoint follows immediately from this fact.
- The composition law in \mathcal{M} is associative, since the composition law in \mathcal{C} is associative.
- Given an object $f \in \operatorname{obj}(\mathcal{M})$ with $f \in \operatorname{hom}_{\mathcal{C}}(A, B)$ the identity in $\operatorname{hom}_{\mathcal{M}}(f, f)$ is given by $\operatorname{id}_{f}:=\left(\operatorname{id}_{A, A}, \operatorname{id}_{B, B}\right)$, where $\operatorname{id}_{A, A} \in \operatorname{hom}_{\mathcal{C}}(A, A)$ is the identity.
- Given $f \in \operatorname{obj}(\mathcal{M})$ such that $f \in \operatorname{hom}_{\mathcal{C}}(A, B)$, then $\operatorname{id}_{f} \circ(h, k)=\left(\operatorname{id}_{A} \circ h, \operatorname{id}_{B} \circ k\right)=$ (h, k) for all $(h, k) \in \operatorname{hom}(e, f)$ and all $e \in \operatorname{obj}(\mathcal{M})$. And $\left(h^{\prime}, k^{\prime}\right) \operatorname{oid}_{f}=\left(h^{\prime} \circ\right.$ $\left.\operatorname{id}_{A}, k^{\prime} \circ \operatorname{id}_{B}\right)=\left(h^{\prime}, k^{\prime}\right)$ for every $\left(h^{\prime}, k^{\prime}\right) \in \operatorname{hom}(f, g)$ and all $g \in \operatorname{obj}(\mathcal{M})$.
(c) Let G be a group and let \mathcal{C} be the category associated to it in part (a). If H is a normal subgroup of G, define a relation by $x \sim y$ if and only if $x y^{-1} \in H$. Show that \sim leads to an equivalence on the category \mathcal{C} and that for the corresponding quotient category \mathcal{C}^{\prime} we have $[*, *]=G / H$.

Solution:

- Let $f \in \operatorname{hom}_{\mathcal{C}}(*, *)$ and $f \sim f^{\prime}$, then $f^{\prime} \in \operatorname{hom}_{\mathcal{C}}(*, *)$, since there is only one set of morphisms.
- Let $f \sim f^{\prime}$ and $g \sim g^{\prime}$ and let $g f$ exist. Then $(g f)\left(g^{\prime} f^{\prime}\right)^{-1}=g f f^{\prime-1} g^{\prime-1} \in$ H since $f f^{\prime-1} \in H$ and H is a normal subgroup of G.
- Next we will show that the set of morphisms $[*, *]$ in \mathcal{C}^{\prime}, the quotient category, is equal to G / H. By definition $[*, *]=\left\{[f]: f \in \operatorname{hom}_{\mathcal{C}}(*, *)\right\}$. The set on the right hand side is precisely the set of all cosets of H in G and hence $[*, *]=G / H$.

*Exercise 5: Examples of Functors

(a) Given a category \mathcal{C}, prove that for a fixed object $M \in \operatorname{obj} \mathcal{C}$, the mapping that sends $A \in \operatorname{obj} \mathcal{C}$ to $\operatorname{Hom}(M, A)=\operatorname{hom}(M, A)$ respectively $\operatorname{Hom}(A, M)=$ $\operatorname{hom}(A, M)$ is a covariant respectively contravariant functor from \mathcal{C} to the category Sets. To prove this, first define $f \longmapsto \operatorname{Hom}(M, f)$ and $f \longmapsto \operatorname{Hom}(f, M)$ for $f \in \operatorname{hom}_{\mathcal{C}}(A, B)$ and $A, B \in \operatorname{obj} \mathcal{C}$ in a suitable way.

Solution of (a):

Let (C) be a category and let $M \in \operatorname{obj}(\mathcal{C})$ be a fixed object.
Part 1: Show that $A \longmapsto \operatorname{hom}(M, A)$ for $A \in \operatorname{obj}(\mathcal{C})$ defines a covariant functor from \mathcal{C} to Sets.
(i) If $A \in \operatorname{obj}(\mathcal{C})$, then $\operatorname{Hom}(M, A)$ is a set by definition of the category \mathcal{C}.
(ii) Given $f \in \operatorname{hom}_{\mathcal{C}}\left(A, A^{\prime}\right)$ for $A, A^{\prime} \in \operatorname{obj}(\mathcal{C})$, define
$\operatorname{Hom}(M, f) \in \operatorname{hom}_{\text {Sets }}\left(\operatorname{Hom}_{\mathcal{C}}(M, A), \operatorname{Hom}_{\mathcal{C}}\left(M, A^{\prime}\right)\right)$ by
$\operatorname{Hom}(M, f)(g):=f \circ g$ for $g \in \operatorname{hom}_{\mathcal{C}}(M, A)$.
(iii) Let $f \in \operatorname{hom}_{\mathcal{C}}(A, B)$ and $f^{\prime} \in \operatorname{hom}_{\mathcal{C}}(B, C)$ for $A, B, C \in \operatorname{obj}(\mathcal{C})$. Then: $\operatorname{Hom}\left(M, f \circ f^{\prime}\right)(g)=\left(f^{\prime} \circ f\right) \circ g=f^{\prime} \circ(f \circ g)=\operatorname{Hom}\left(M, f^{\prime}\right) \circ \operatorname{Hom}(M, f)(g)$ for $g \in \operatorname{hom}_{\mathcal{C}}(A, B)$
(iv) Given $A \in \operatorname{obj}(\mathcal{C})$, then $\operatorname{Hom}\left(M, 1_{A}\right)(g)=1_{A} \circ g=g$ for all $g \in \operatorname{hom}_{\mathcal{C}}(A, A)$.

Part 2: Show that $A \longmapsto \operatorname{hom}(A, M)$ for $A \in \operatorname{obj}(\mathcal{C})$ defines a contravariant functor from \mathcal{C} to Sets.
(i) If $A \in \operatorname{obj}(\mathcal{C})$, then $\operatorname{Hom}(A, M)$ is a set by definition of the category \mathcal{C}.
(ii) Given $f \in \operatorname{hom}_{\mathcal{C}}\left(A, A^{\prime}\right)$ for $A, A^{\prime} \in \operatorname{obj}(\mathcal{C})$, define
$\operatorname{Hom}(f, M) \in \operatorname{hom}_{\text {Sets }}\left(\operatorname{Hom}_{\mathcal{C}}\left(A^{\prime}, M\right), \operatorname{Hom}_{\mathcal{C}}(A, M)\right)$ by
$\operatorname{Hom}(f, M)(g):=g \circ f$ for $g \in \operatorname{hom}_{\mathcal{C}}\left(A^{\prime}, M\right)$.
(iii) as in Part 1 (iii) "with arrows reversed".
(iv) as in Part 1 (iv) "with arrows reversed".
(b) In the above setting for $\mathcal{C}=\mathbf{G r o u p s}$ and $C \in \mathcal{C}$ and $g \in \operatorname{hom}_{\mathcal{C}}(B, C)$, let

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 .
$$

be an exact sequence ${ }^{1}$ of groups. In the following we assume that both Hom functors are functors from Groups to Groups. In order to speak of exact sequences we need the target category to be a so-called abelian category. Show

[^0]that
(i)
$0 \longrightarrow \operatorname{Hom}(M, A) \xrightarrow{\operatorname{Hom}(M, f)} \operatorname{Hom}(M, B) \xrightarrow{\operatorname{Hom}(M, g)} \operatorname{Hom}(M, C)$ is exact.
(ii) $\operatorname{Hom}(A, M) \underset{\operatorname{Hom}(f, M)}{ } \operatorname{Hom}(B, M) \overleftarrow{\operatorname{Hom}(g, M)} \operatorname{Hom}(C, M) \longleftarrow 0$ is exact.
Note that the above shows that both Hom-functors are left-exact.

Solution of (b):

Proof of (i):
(1) We first show that $\operatorname{ker}(\operatorname{Hom}(M, f))$ is trivial. Let $h \in \operatorname{Hom}(M, A)$ such that $\operatorname{Hom}(M, f)(h)=f \circ h=0$. Assume that $h \neq 0$, then there is some $x \in M$ such that $h(x) \neq 0$. Hence $f(g(x))=0$ is contradicting that $\operatorname{ker}(f)=0$.
(2) We now show that $\operatorname{im}(\operatorname{Hom}(M, f))=\operatorname{ker}(\operatorname{Hom}(M, g))$ holds.
" \subseteq ": Let $h \in \operatorname{im}(\operatorname{Hom}(M, f))$, then $h=f \circ h^{\prime}$ for some $h^{\prime} \in \operatorname{Hom}(M, A)$. Hence $\operatorname{Hom}(M, g)(h)=g \circ h=g \circ f \circ h^{\prime}=0$, by the exactness of

$$
\begin{equation*}
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{*}
\end{equation*}
$$

" \supseteq ": Let $h^{\prime} \in \operatorname{ker}(\operatorname{Hom}(M, g))$, then $\operatorname{Hom}(M, g)\left(h^{\prime}\right)=g \circ h^{\prime}=0$. Then $g\left(h^{\prime}(x)\right)=0$ for all $x \in M$. By the exactness of $(*)$ choose for every $x \in M$ a $y \in A$ such that $f(y)=h^{\prime}(x)$. This defines a map $h: M \longrightarrow A$. It is a homomorphism because h^{\prime} is a homomorphism. Also $\operatorname{Hom}(M, f)(h)=h^{\prime}$.

Proof of (ii):
(1) We first show that $\operatorname{ker}(\operatorname{Hom}(g, M))$ is trivial. So let $h \in \operatorname{Hom}(C, M)$ such that $\operatorname{Hom}(g, M)(h)=h \circ g=0$. Assume that $h \neq 0$, then there is some $x \in C$ such that $h(x) \neq 0$. Hence $h(g(x))=0$ is contradicting that $\operatorname{ker}(g)=0$.
(2) We now show that $\operatorname{im}(\operatorname{Hom}(g, M))=\operatorname{ker}(\operatorname{Hom}(f, M))$ holds.
" \subseteq ": Let $h \in \operatorname{im}(\operatorname{Hom}(g, M))$, then $h=h^{\prime} \circ g$ for some $h^{\prime} \in \operatorname{Hom}(C, M)$. Hence $\operatorname{Hom}(f, M)(h)=h \circ f=h^{\prime} \circ g \circ f=0$ by the exactness of $(*)$.
" \supseteq ": Let $h^{\prime} \in \operatorname{ker}(\operatorname{Hom}(f, M))$, then $\operatorname{Hom}(f, M)\left(h^{\prime}\right)=h^{\prime} \circ f=0$. Then $h^{\prime}(f(x))=0$ for all $x \in M$. By the exactness of $(*)$ define the map $h: C \longrightarrow M$ as $h=h^{\prime} \circ g^{-1}$. This h is a well-defined homomorphism since $\operatorname{im}(g)=\operatorname{ker}(0)=C$ and $\operatorname{Hom}(g, M)(h)=h^{\prime} \circ g^{-1} \circ g=h^{\prime}$ holds.
(c) For an abelian group G let T_{G} be its torsion subgroup.
(i) Show that $G \stackrel{t}{\longmapsto} T_{G}$ defines a functor from $\mathbf{A b} \longrightarrow \mathbf{A b}$ if we define
$t(f):=f \mid T_{G}$ (restriction) for every $f \in \operatorname{hom}(G, H)$ for $G, H \in \mathbf{A b}$.
(ii) Show that if f is injective, then $t(f)$ is injective. Phrase this in terms of "exactness of funtors".
(iii) Show that f surjective does not imply $t(f)$ surjective. Phrase this in terms of "exactness of funtors".

Solution of (c):

Part (i):

- Certainly T_{G} is an abelian group for any abelian group G.
- Let $f: G \longrightarrow G^{\prime}$ be a homomorphism of groups, then $t(f):=f \mid T_{G}$. Given an element $a \in T_{G}, f$ will map it to an element of finite order, hence $f(a) \in T_{G^{\prime}}$ and $t(f)$ is well-defined.
- Let $G \xrightarrow{f} G^{\prime} \xrightarrow{g} G^{\prime \prime}$ be two homomorphisms of abelian groups, then $t(g \circ f)=t(g) \circ t(f)$ by associativity of the composition of group homomorphisms.
- Let G be an abelian group and id : $G \longrightarrow G$ be the identity on G, then $t(\mathrm{id}): T_{G} \longrightarrow T_{G}$ is the identity on T_{G}.
Part (ii):
- Let $f: G \longrightarrow G^{\prime}$ be a homomorphism of abelian groups s.t. $\operatorname{ker}(f)=0$. Assume there is an $x \in T_{G}$ s.t. $t(f)(x)=0$. This implies that $f(x)=0$ and hence $x=0$. Hence $\operatorname{ker}(t(f))=0$.
$\circ 0 \longrightarrow G \longrightarrow G^{\prime}$ exact implies that $0 \longrightarrow T_{G} \longrightarrow T_{G^{\prime}}$ is exact.
Part (iii):
Let $f: \mathbb{Z} \longrightarrow \mathbb{Z} / 2$ be given by $f(1)=1$. This is easily seen to be a homomorphism of abelian groups. Also it is surjective. We have $t(\mathbb{Z})=0$ and $t(\mathbb{Z} / 2)=\mathbb{Z} / 2$, hence $t(f): 0 \longrightarrow \mathbb{Z} / 2$ is the inclusion which is not surjective.

[^0]: ${ }^{1}$ If "kernel" and "image" are well-defined in a category, then an exact sequence in that category is a sequence of objects and morphisms such that for each morphism its image is equal to the kernel of the next morphism.

