

Prof. Pavle Blagojević Albert Haase Prof. Holger Reich Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 3

Date of assignment: Monday, Nov. 17, 2014. We highly recommend problems marked with a star.

Exercise 1: Short Exact Sequence That Does Not Split Given the abelian groups \mathbb{Z} , $\mathbb{Z} \oplus (\mathbb{Z}/2)^{\mathbb{N}}$ and $(\mathbb{Z}/2)^{\mathbb{N}}$ construct a short exact sequence

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

with these groups such that $B \cong A \oplus C$ and the sequence does not split.

*Exercise 2: Homology of the Suspension

Given a topological space X we define the suspension SX of X as the quotient space

$$SX := X \times [0,1] / \sim$$

where \sim is the equivalence relation generated by: $(x, s) \sim (y, t)$ if and only if s = t = 0 or s = t = 1. Show that for the reduced homology groups

$$\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(SX)$$
 for all n .

*Exercise 3: Homology of Complements

- (a) Suppose U and V are open sets in \mathbb{R}^d and $H_n(U \cup V) = 0$ for all $n \ge 1$. Show that $H_n(U \cap V) \cong H_n(U) \oplus H_n(V)$ for all $n \ge 1$.
- (b) Suppose A and B are disjoint closed sets in \mathbb{R}^d . Show that

$$H_n(\mathbb{R}^d \setminus (A \cup B)) \cong H_n(\mathbb{R}^d \setminus A) \oplus H_n(\mathbb{R}^d \setminus B)$$
 for all $n \ge 1$.

What can be said for H_0 ?

(c) Let U be an open subset of \mathbb{R}^n and let $K \subset U$ be compact. Show that

$$H_n(U \setminus K) = H_n(U) \oplus H_n(\mathbb{R}^2 \setminus K)$$
 for all $n \ge 1$.

*Exercise 4: Homology of the Wedge of two Spaces

Given topological spaces X and Y and "base points" $x_0 \in X$ and $y_0 \in Y$, the *wedge* of X and Y (with respect to the base points) is defined as the quotient space

$$X \lor Y := X \sqcup Y / \sim$$

where \sim is the equivalence relation generated by $x_0 \sim y_0$. Assume that x_0 is a deformation retract of an open set $U \subseteq X$ and y_0 is a deformation retract of an open set $V \subseteq Y$. Show that

$$\widetilde{H}_n(X \vee Y) \cong \widetilde{H}_n(X) \oplus \widetilde{H}_n(Y)$$
 for all n .