Arbeitsgruppe Diskrete Geometrie

Topologie II - Exercise Sheet 3

Exercise 1: Short Exact Sequence Does Not Split

Given the abelian groups $\mathbb{Z}, \mathbb{Z} \oplus(\mathbb{Z} / 2)^{\mathbb{N}}$ and $(\mathbb{Z} / 2)^{\mathbb{N}}$ construct a short exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

with these groups such that $B \cong A \oplus C$ and it does not split.

Solution to Exercise 1:

Cosinder the sequence

$$
\begin{equation*}
0^{i} \underset{\sim}{\longleftrightarrow} \mathbb{Z} \oplus(\mathbb{Z} / 2)^{\mathbb{N}} \xrightarrow{j}(\mathbb{Z} / 2)^{\mathbb{N}} \longrightarrow 0 \tag{*}
\end{equation*}
$$

where $i(z):=(2 z, 0)$ and $\operatorname{im}(i)=2 \mathbb{Z} \oplus 0$.
We have $\operatorname{ker}(j)=2 \mathbb{Z} \oplus 0$ and $\operatorname{im}(j)=(\mathbb{Z} / 2)^{\mathbb{N}}$.
Hence the sequence $(*)$ is exact. Assume $(*)$ splits. Then there is a homomorphism $s: \mathbb{Z} \oplus(\mathbb{Z} / 2)^{\mathbb{N}} \longrightarrow \mathbb{Z}$ such that $s \circ i=i d_{\mathbb{Z}}$. Then every element $a \in(\mathbb{Z} / 2)^{\mathbb{N}}$ must be mapped to 0 by s, since s preserves the order of elements (and a has finite order). Then s is given by $m \in \mathbb{Z}$ such that $s(z, a)=m z$. Hence $s \circ i(z)=m 2 z \neq z$ leading to a contradiction.

*Exercise 2: Homology of the Suspension

Given a topological space X we define the suspension $S X$ of X as

$$
S X:=X \times[0,1] / \sim
$$

where \sim is the equivalence relation generated by: $(x, s) \sim(y, t)$ if and only if $s=t=0$ or $s=t=1$. Show that

$$
\widetilde{H}_{n}(X) \cong \widetilde{H}_{n+1}(S X) \text { for all } n
$$

Solution to Exercise 2:

we will show that $\widetilde{H}_{n}(X)=\widetilde{H}_{n+1}(S X)$ by applying the Mayer-Vietoris sequence for reduced homology to the following sets:

$$
\begin{aligned}
& U:=X \times\left[\frac{1}{4}, 1\right] / \sim \\
& V:=X \times\left[0, \frac{3}{4}\right] / \sim
\end{aligned}
$$

Note that $S X=\operatorname{int}(U) \cup \operatorname{int}(V)$. We will show that:
(1) U and V can each be deformation retracted to a point.
(2) $U \cap V$ can be deformation retracted to X.

Then the Mayer-Vietoris sequence in reduced homology is for $n \in \mathbb{N}_{\geq 0}$:

$$
\longrightarrow 0 \oplus 0 \longrightarrow \widetilde{H}_{n+1}(S X) \longrightarrow \widetilde{H}_{n}(X) \longrightarrow 0 \oplus 0 \longrightarrow
$$

This implies that $\widetilde{H}_{n+1}(S X) \cong \widetilde{H}_{n}(X)$ for all $n \in \mathbb{N}_{\geq 0}$.
We will prove (1) for V. The proof for U is analogous. Define a map:

$$
\begin{aligned}
F: X \times\left[0, \frac{3}{4}\right] \times[0,1] & \longrightarrow X \times\left[0, \frac{3}{4}\right] / \sim=V \\
(x, s, t) & \longmapsto[(x,(1-t) s)]
\end{aligned}
$$

This is continuous since it is the composition of continuous maps.
Let $\pi: X \times\left[0, \frac{3}{4}\right] \times[0,1] \longrightarrow V \times[0,1]$ be the quotient map. Then the map

$$
\begin{aligned}
\widetilde{F}: V \times[0,1] & \longrightarrow V \\
([(x, s)], t) & \longmapsto[(x,(1-t) s)]
\end{aligned}
$$

is well defined an continuous because $\widetilde{F} \circ \pi=F$ and F is continuous. (Notice that \widetilde{F} is not well defined if we take $V=X \times[0,1] / \sim$.)
Now we check that \widetilde{F} is a deformation retraction to the point $[(x, 0)]$:
(a) $F([(x, s)], 0)=[(x, s)]$ for all $[(x, s)] \in V$.
(b) $F([(x, s)], 1)=[(x, 0)]$ for all $[(x, s)] \in V$
(c) $F([(x, 0)], 1)=[(x, 0)]$ for all $x \in X$.

To prove (2) note that $U \cap V \cong X \times\left[\frac{1}{4}, \frac{3}{4}\right]$. Define

$$
\begin{aligned}
G: X \times\left[\frac{1}{4}, \frac{3}{4}\right] \times[0,1] & \longrightarrow X \times\left[\frac{1}{4}, \frac{3}{4}\right] \\
(x, s, t) & \longmapsto\left(x,(1-t)\left(s-\frac{1}{4}\right)+\frac{1}{4}\right) .
\end{aligned}
$$

Then G is continuous and a deformation retraction to $X \times\left\{\frac{1}{4}\right\} \cong X$.

*Exercise 3: Homology of Complements

(a) Suppose U and V are open sets in \mathbb{R}^{d} and $H_{n}(U \cup V)=0$ for all $n \geq 1$. Show that $H_{n}(U \cap V) \cong H_{n}(U) \oplus H_{n}(V)$ for all $n \geq 1$.
(b) Suppose A and B are disjoint closed sets in \mathbb{R}^{d}. Show that

$$
H_{n}\left(\mathbb{R}^{d} \backslash(A \cup B)\right) \cong H_{n}\left(\mathbb{R}^{d} \backslash A\right) \oplus H_{n}\left(\mathbb{R}^{d} \backslash B\right) \quad \text { for all } n \geq 1
$$

What can be said for H_{0} ?
(c) Let U be an open subset of \mathbb{R}^{n} and let $K \subset U$ be compact. Show that

$$
H_{n}(U \backslash K)=H_{n}(U) \oplus H_{n}\left(\mathbb{R}^{2} \backslash K\right) \text { for all } n \geq 1
$$

Solution to Exercise 3:

These exercises are applications of the Mayer-Vietoris sequence. Let us recall the statement:
Let X be topological space and $U, V \subseteq X$ subspaces such that $\operatorname{int}(U) \cup \operatorname{int}(V)=X$. Then the following sequence of (reduced) homology groups is exact:

$$
\ldots \longrightarrow H_{n+1}(X) \xrightarrow{\partial_{*}} H_{n}(U \cap V) \xrightarrow{\left(i_{*}, j_{*}\right)} H_{n}(U) \oplus H_{n}(V) \xrightarrow{u_{*}-l_{*}} H_{n}(X) \longrightarrow \ldots
$$

(a) Set $X:=U \cup V$ and plug $H_{n}(X)=0$ into the sequence.
(b) Set $X=\mathbb{R}^{d}$ and $U:=\mathbb{R}^{d} \backslash A$ and $V:=\mathbb{R}^{d} \backslash B$. Then $\operatorname{int}(U)=U$ and $\operatorname{int}(V)=V$ and $U \cup V=\mathbb{R}^{d} \backslash(A \cap B)=\mathbb{R}^{d}$. Then $H_{n}(X)=0$ for all $n \geq 1$. Plug this into the sequence to get the desired isomorphism.
For H_{0} the analogous statement is not true. For a counterexample take $A, B \subseteq$ \mathbb{R}^{2} to be two distinct points. Then $H_{0}\left(\mathbb{R}^{2} \backslash(A \cup B)\right) \cong \mathbb{Z}$ and $H_{0}\left(\mathbb{R}^{2} \backslash A\right) \oplus$ $H_{0}\left(\mathbb{R}^{2} \backslash B\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.
(c) Set $V:=\mathbb{R}^{2} \backslash K$. Then V is open because K is closed as a compact set. Hence $\mathbb{R}^{2}=U \cup V=\operatorname{int}(U) \cup \operatorname{int}(V)$. As in (b) $H_{n}\left(\mathbb{R}^{2}\right)=0$ for all $n \geq 1$. If we plug this into the sequence we get the desired result.

*Exercise 4: Homology of the Wedge of two Spaces

Given topological spaces X and Y and "base points" $x_{0} \in X$ and $y_{0} \in Y$, the wedge of X and Y is definded as

$$
X \vee Y:=X \sqcup Y / \sim
$$

where \sim is the equivalence relation generated by $x_{0} \sim y_{0}$. Assume that x_{0} is a deformation retract of an open set $U \subseteq X$ and y_{0} is a deformation retract of an open set $V \subseteq Y$. Show that

$$
\widetilde{H}_{n}(X \vee Y) \cong \widetilde{H}_{n}(X) \oplus \widetilde{H}_{n}(Y) \quad \text { for all } n
$$

Solutions to Exercise 4:

We will proceed similarly as in Exercise 2 . We will define sets \widetilde{U} and \widetilde{V} such that
(1) $\operatorname{int}(\widetilde{U}) \cup \operatorname{int}(\widetilde{V})$ deformation retracts to $X \vee Y$.
(2) \widetilde{U} and \widetilde{V} deformation retract to homeomorphic copies of X respectively Y.
(3) $\widetilde{U} \cap \widetilde{V}$ deformation retracts to a point.

Then the Mayer-Vietoris sequence will give the desired isomorphism
$\widetilde{H}_{n}(X) \oplus \widetilde{H}_{n}(Y) \cong \widetilde{H}_{n}(X \vee Y)$ for all $n \in \mathbb{N}_{\geq 0}$.
Define $\widetilde{U}:=U \times Y / \sim$ and $\widetilde{V}:=X \times V / \sim$.
To show (2), let $F_{1}: U \times[0,1] \longrightarrow U$ be the deformation retraction to x_{0} and $F_{2}: V \times[0,1] \longrightarrow V$ be the deformation retraction to y_{0} then define:

$$
\begin{aligned}
\widetilde{F_{1}}: U \times Y \times[0,1] & \longrightarrow U \times Y \\
(u, y, t) & \longmapsto\left(F_{1}(u, t), y\right) \\
\widetilde{F_{2}}: X \times V \times[0,1] & \longrightarrow X \times V \\
(x, v, t) & \longmapsto\left(x, F_{2}(v, t)\right) .
\end{aligned}
$$

If we now pass to the maps on the quotients, we get deformation retractions that send \widetilde{U} to $\left\{x_{0}\right\} \times Y \approx Y$ and \widetilde{V} to $X \times\left\{y_{0}\right\} \approx X$. (1) and (3) are shown in a similar way as (2).

