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*Exercise 1: Deformation Retractions
(a) Show that if A is a retract of X, meaning there exists a retraction r: X — A,
then the maps
H,(A) — H,(X)

in homology induced by the inclusion A < X are injective.
(b) Give an example of a space that is contractible but does not deformation retract
to a point.
(c¢) The following topological space, up to homeomorphism, is called the Mdbius
strip:
M :=10,1] x [0,1]/ ~,

where ~ is the equivalence relation generated by (0,¢) ~ (1,1 —¢). Show that
M deformation retracts to a circle. By circle we mean a space homeomorphic
to St

Solution to Exercise 1:

(a) Let 7 : X — A be a retraction, that is, A C X and r4 = ids. Hence, if
i : A <= X denotes the inclusion map, then r o = id4. Let r,,i,,1d4, denote
the maps on the level of homology. Then by functorality (because homology is
a functor) we get 7, o i, = ida,. This directly implies that i, is injective.

(b) The wording of this exercise was not very precise. Here the difference between
“deformation retraction” and “strong deformation retraction” is paramount.

A strong deformation retraction is a deformation retraction F': X x[0,1] — X
of a topological space X to a subspace A C X that leaves A fixed for all times
t € [0,1]. More precisely F(a,t) = a Ya € A,t € [0,1]. It is an easy exercise
to verify that a space is contractible if and only if it deformation retracts to a

point (in the weaker sense). Hence the correct wording of this exercise is:



Give an example of a space X, that is contractible but does not strong defor-
mation retract to a point.

The following example is slightly involved and is taken from Hatcher'. We
will make use of the following property of spaces X that strong deformation
retract to a point: If a space X has a strong deformation retract to a point
xo € X, then for every neighborhood U of xy there exists a neighborhood V'
of x¢ contained in U such that the inclusion ¢ : V < U is homotopic to a
constant map. Note that such a neighborhood V' must be path connected and
that this property is not true for deformation retractions. Consider the following
space X := [0, 1] x {0}UU,cqno 117} X [0, 1—7] considered as a subspace of R.

b

We can easily show that X strong deformation retracts to [0, 1] x {0} and fur-
ther that X strong deformation retracts to any point zg € [0,1] x {0}. Since
no neighborhood of any point o € X'\ [0, 1] x {0} is path connected, X cannot
strong deformation retract to any such point.

Now consider the following space Y obtained by gluing copies of X together in
the pictured way.

Again we consider Y as an subspace of R?. Observe that no point in Y has
a path connected neighborhood, hence Y cannot strong deformation retract to
any point. One now shows that Y is homotopic to the thick zigzag-line, which
is homotopic to R, hence Y is contractible.

0
Consider the following map F : [0,1] x [0,1] x [0,1] — [0,1] x [0, 1] with
F(r,s,t) ;== (r,tr + (1 —t)s) and consider the following figure

F is a deformation retract to the diagonal given by C := {(r,r)|r € [0, 1]}.
Now we pass to the quotient M and consider the map F: M x 0,1] —
M where I:;([(r, s)|,t) .= [F(r,s,t)] which is continuous. It is easy to verify
that widetildeF' is a deformation retraction of M to C'// ~. Also, the space

LAllen Hatcher: Algebraic Topology, page 18, exercise 6 (b).



C'/ ~ is homeomorphic to a circle (the endpoints of C' are identified under the
equivalence relation).

Exercise 2: Open Maps

Show that a continuous and bijective map from a compact space to a Hausdorff

space is open, that is, sends open sets to open sets.

*Exercise 3: Topology of Simplicial Complezes

(a) Give an example of a geometric simplicial complex in some R? whose topology
does not agree with the subspace topology.

(b) Show that a simplicial complex is a Hausdorff space.

(c) Show that a simplicial complex is compact if and only if it is finite, meaning it

is a set of only finitely many simplices.

Solution to Exercise 3:

(a) Consider the following 0-dimensional simplicial complex:
K = {{1}.{0} |n € N}.
Then {0} is open in |K| because the intersection with every set {1},{0} is
open in the set (either this is the empty set or it is {0}). As a subspace of R
however, {0} C |K| is not open because there exists no open set U C R such
that U N |K| = {0}.

(b) The proof is due Munkres, Lemma 2.4.
Given a topological space X and a simplicial complex K, a map f : |[K| — X
is continuous if and only if f|, : 0 — X is continuous for all simplices o € K.
If vis a vertex of K and = € |K| a point and x = ) _ t;a; is a convex combination
of the unique simplex that contains x in its relative interior, then we define
to(z) = t; if v = q; for some i and t,(x) = 0 otherwise. This defines a function
t, : conv(a;) — R that is continuous on conv(a;) because it is constant. Hence
t, is continuous on | K| by the statement above.
Given two point x,y € |K]|, there is at least one vertex v € K such that
ty(x) # t,(y). Choose r in the open interval (¢,(x),t,(y)) (or (t,(y),t,(x))).
Now the sets {x | t,(z) < r} and {z|t,(x) > r} are open disjoint neighborhoods
containing x and y.

O

(c) If K is finite it is compact or the union of finitely many compact sets. If K is
not finite, take an e-neighborhood for every simplex ¢ in K and cover |K| with
these neighborhoods. This cover will not have a finite subcover.

O



*Exercise 4: Simplicial Homology

(a)

(b)
(c)

Compute the simplicial homology of a wedge of two circles directly. Extend
your reasoning and model to compute the simplicial homology of the wedge of
two spheres S* v/ S°.

Calculate the simplicial homology of the Mobius strip M directly. Note: Not
every triagulation of the square will lead to a triangulation of M!

How could we have calculated the homology of M more easily?

Solution to Exercise 4:

(a)

We will use tha following simplicial model for S' v S!

y -\\ -

The simplicial complex K is homeomorphic to S* V S! via “radial projection®
with two centers. By counting faces of K we have Cy(K) = Z%° C(K) = Z%°
and C;(K) =0 for all i > 2.

Since | K| is path connected H°(K) = Z. The group H?(K) = 0 for j > 2 since

there are no faces of dimension higher than 1. For H'(K) we compute:
nolwo, 21] + nafx1, 2] — nafzo, T3] = nalw, 1] + Nafr3, 24| — 15[T0, 74] € ker Oy

Then —nozg + (ng — n1)xy = (N — ng)xa + (ng — n3)xg + (n3 — ng)xs + (ng —
ns)xy + nsry = 0. Implying that (ny — n3) = (ng — ns) and

(ng—n1) = (n1—mn2) = (n3—ny) = (ng—n;) = 0. Hence ny = ny = ng and n3 =
ny = ms which implies that H'(K) is generated by ([xg, z1] + [z1, T2] — [70, 22])
and ([xg, z3] = [x3,14] — [T0,24]) and hence is isomorphic to Z®2. On the last
sheet we showed that the homology of S¥ Vv S’ is the direct product of the
homology of S*¥ and the homology of S! since we can form the wedge sum at
points that are deformation retracts of open neighborhoods in S* respectively S'.
In this exercise we can verify this by taking the join of the boundary complexes
of a (k+1) and an (I + 1) simplex attached at a vertex.

We will use the following simplicial model for M:

F i

Clearly |L| ~ M. By counting faces we get:
Co(L) 2 Z%°,Cy(L) = Z%1°,Cy(L) =2 Z%°,C;(L) = 0 for all j > 3.Since M is



path connected (images of path connected spaces are path connected) we know
that H°(L) = Z. Thus we get: H*(L) = 0 by calculating ker 9, and H*(L) = 7Z
by calculating ker 0,/ im 0s.

(c¢) In Exercise 1 (c) we showed that M has a deformation retract to a circle, hence

it must have the homology of a circle.



