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*Exercise 1: Deformation Retractions

(a) Show that if A is a retract of X, meaning there exists a retraction r : X −→ A,

then the maps

Hn(A) −→ Hn(X)

in homology induced by the inclusion A ↪→ X are injective.

(b) Give an example of a space that is contractible but does not deformation retract

to a point.

(c) The following topological space, up to homeomorphism, is called the Möbius

strip:

M := [0, 1]× [0, 1]/ ∼ ,

where ∼ is the equivalence relation generated by (0, t) ∼ (1, 1− t). Show that

M deformation retracts to a circle. By circle we mean a space homeomorphic

to S1.

Solution to Exercise 1:

(a) Let r : X −→ A be a retraction, that is, A ⊆ X and r|A = idA. Hence, if

i : A ↪→ X denotes the inclusion map, then r ◦ i = idA. Let r∗, i∗, idA∗ denote

the maps on the level of homology. Then by functorality (because homology is

a functor) we get r∗ ◦ i∗ = idA∗. This directly implies that i∗ is injective.

(b) The wording of this exercise was not very precise. Here the difference between

“deformation retraction“ and “strong deformation retraction” is paramount.

A strong deformation retraction is a deformation retraction F : X×[0, 1] −→ X

of a topological space X to a subspace A ⊆ X that leaves A fixed for all times

t ∈ [0, 1]. More precisely F (a, t) = a ∀a ∈ A, t ∈ [0, 1]. It is an easy exercise

to verify that a space is contractible if and only if it deformation retracts to a

point (in the weaker sense). Hence the correct wording of this exercise is:
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Give an example of a space X, that is contractible but does not strong defor-

mation retract to a point.

The following example is slightly involved and is taken from Hatcher1. We

will make use of the following property of spaces X that strong deformation

retract to a point: If a space X has a strong deformation retract to a point

x0 ∈ X, then for every neighborhood U of x0 there exists a neighborhood V

of x0 contained in U such that the inclusion i : V ↪→ U is homotopic to a

constant map. Note that such a neighborhood V must be path connected and

that this property is not true for deformation retractions. Consider the following

space X := [0, 1]×{0}∪
⋃
r∈Q∩[0,1]{r}× [0, 1−r] considered as a subspace of R2.
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Exercises

1. Construct an explicit deformation retraction of the torus with one point deleted

onto a graph consisting of two circles intersecting in a point, namely, longitude and

meridian circles of the torus.

2. Construct an explicit deformation retraction of Rn − {0} onto Sn−1 .

3. (a) Show that the composition of homotopy equivalences X→Y and Y→Z is a

homotopy equivalence X→Z . Deduce that homotopy equivalence is an equivalence

relation.

(b) Show that the relation of homotopy among maps X→Y is an equivalence relation.

(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

4. A deformation retraction in the weak sense of a space X to a subspace A is a

homotopy ft :X→X such that f0 = 11, f1(X) ⊂ A , and ft(A) ⊂ A for all t . Show

that if X deformation retracts to A in this weak sense, then the inclusion A↩ X is

a homotopy equivalence.

5. Show that if a space X deformation retracts to a point x ∈ X , then for each

neighborhood U of x in X there exists a neighborhood V ⊂ U of x such that the

inclusion map V↩U is nullhomotopic.

6. (a) Let X be the subspace of R2 consisting of the horizontal segment

[0,1]×{0} together with all the vertical segments {r}×[0,1− r] for

r a rational number in [0,1] . Show that X deformation retracts to

any point in the segment [0,1]×{0} , but not to any other point. [See

the preceding problem.]

(b) Let Y be the subspace of R2 that is the union of an infinite number of copies of X
arranged as in the figure below. Show that Y is contractible but does not deformation

retract onto any point.

(c) Let Z be the zigzag subspace of Y homeomorphic to R indicated by the heavier

line. Show there is a deformation retraction in the weak sense (see Exercise 4) of Y
onto Z , but no true deformation retraction.

7. Fill in the details in the following construction from

[Edwards 1999] of a compact space Y ⊂ R3 with the

same properties as the space Y in Exercise 6, that is, Y
is contractible but does not deformation retract to any

point. To begin, let X be the union of an infinite se-

X Y
quence of cones on the Cantor set arranged end-to-end,

as in the figure. Next, form the one-point compactifica-

tion of X×R . This embeds in R3 as a closed disk with curved ‘fins’ attached along

We can easily show that X strong deformation retracts to [0, 1]× {0} and fur-

ther that X strong deformation retracts to any point x0 ∈ [0, 1] × {0}. Since

no neighborhood of any point x0 ∈ X \ [0, 1]×{0} is path connected, X cannot

strong deformation retract to any such point.

Now consider the following space Y obtained by gluing copies of X together in

the pictured way.
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X Y
quence of cones on the Cantor set arranged end-to-end,

as in the figure. Next, form the one-point compactifica-
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Again we consider Y as an subspace of R2. Observe that no point in Y has

a path connected neighborhood, hence Y cannot strong deformation retract to

any point. One now shows that Y is homotopic to the thick zigzag-line, which

is homotopic to R, hence Y is contractible.

�

(c) Consider the following map F : [0, 1] × [0, 1] × [0, 1] −→ [0, 1] × [0, 1] with

F (r, s, t) := (r, tr + (1− t)s) and consider the following figure

F is a deformation retract to the diagonal given by C := {(r, r) | r ∈ [0, 1]}.
Now we pass to the quotient M and consider the map F̃ : M × [0, 1] −→
M where F̃ ([(r, s)], t) := [F (r, s, t)] which is continuous. It is easy to verify

that widetildeF is a deformation retraction of M to C/ ∼. Also, the space

1Allen Hatcher: Algebraic Topology, page 18, exercise 6 (b).
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C/ ∼ is homeomorphic to a circle (the endpoints of C are identified under the

equivalence relation).

Exercise 2: Open Maps

Show that a continuous and bijective map from a compact space to a Hausdorff

space is open, that is, sends open sets to open sets.

*Exercise 3: Topology of Simplicial Complexes

(a) Give an example of a geometric simplicial complex in some Rd whose topology

does not agree with the subspace topology.

(b) Show that a simplicial complex is a Hausdorff space.

(c) Show that a simplicial complex is compact if and only if it is finite, meaning it

is a set of only finitely many simplices.

Solution to Exercise 3:

(a) Consider the following 0-dimensional simplicial complex:

K := {{ 1
n
}, {0} |n ∈ N}.

Then {0} is open in |K| because the intersection with every set { 1
n
}, {0} is

open in the set (either this is the empty set or it is {0}). As a subspace of R
however, {0} ⊆ |K| is not open because there exists no open set U ⊆ R such

that U ∩ |K| = {0}.
(b) The proof is due Munkres, Lemma 2.4.

Given a topological space X and a simplicial complex K, a map f : |K| −→ X

is continuous if and only if f|σ : σ −→ X is continuous for all simplices σ ∈ K.

If v is a vertex of K and x ∈ |K| a point and x =
∑
tiai is a convex combination

of the unique simplex that contains x in its relative interior, then we define

tv(x) = ti if v = ai for some i and tv(x) = 0 otherwise. This defines a function

tv : conv(ai) −→ R that is continuous on conv(ai) because it is constant. Hence

tv is continuous on |K| by the statement above.

Given two point x, y ∈ |K|, there is at least one vertex v ∈ K such that

tv(x) 6= tv(y). Choose r in the open interval (tv(x), tv(y)) (or (tv(y), tv(x))).

Now the sets {x | tv(x) < r} and {x | tv(x) > r} are open disjoint neighborhoods

containing x and y.

�

(c) If K is finite it is compact or the union of finitely many compact sets. If K is

not finite, take an ε-neighborhood for every simplex σ in K and cover |K| with

these neighborhoods. This cover will not have a finite subcover.

�
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*Exercise 4: Simplicial Homology

(a) Compute the simplicial homology of a wedge of two circles directly. Extend

your reasoning and model to compute the simplicial homology of the wedge of

two spheres Sk ∨ S`.
(b) Calculate the simplicial homology of the Möbius strip M directly. Note: Not

every triagulation of the square will lead to a triangulation of M !

(c) How could we have calculated the homology of M more easily?

Solution to Exercise 4:

(a) We will use tha following simplicial model for S1 ∨ S1

The simplicial complex K is homeomorphic to S1 ∨ S1 via “radial projection“

with two centers. By counting faces of K we have C0(K) ∼= Z⊕5, C1(K) ∼= Z⊕6

and Ci(K) ∼= 0 for all i ≥ 2.

Since |K| is path connected H0(K) ∼= Z. The group Hj(K) = 0 for j ≥ 2 since

there are no faces of dimension higher than 1. For H1(K) we compute:

n0[x0, x1] + n1[x1, x2]− n2[x0, x3] = n3[x0, x1] + n4[x3, x4]− n5[x0, x4] ∈ ker ∂1

Then −n0x0 + (n0 − n1)x1 = (n1 − n2)x2 + (n2 − n3)x0 + (n3 − n4)x3 + (n4 −
n5)x4 + n5x4 = 0. Implying that (n2 − n3) = (n0 − n5) and

(n0−n1) = (n1−n2) = (n3−n4) = (n4−n5) = 0. Hence n1 = n2 = n0 and n3 =

n4 = n5 which implies that H1(K) is generated by ([x0, x1] + [x1, x2]− [x0, x2])

and ([x0, x3] = [x3, x4] − [x0, x4]) and hence is isomorphic to Z⊕2. On the last

sheet we showed that the homology of Sk ∨ S` is the direct product of the

homology of Sk and the homology of Sl since we can form the wedge sum at

points that are deformation retracts of open neighborhoods in Sk respectively Sl.
In this exercise we can verify this by taking the join of the boundary complexes

of a (k + 1) and an (l + 1) simplex attached at a vertex.

(b) We will use the following simplicial model for M :

Clearly |L| ≈M . By counting faces we get:

C0(L) ∼= Z⊕5, C1(L) ∼= Z⊕10, C2(L) ∼= Z⊕5, Cj(L) ∼= 0 for all j ≥ 3.Since M is
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path connected (images of path connected spaces are path connected) we know

that H0(L) = Z. Thus we get: H2(L) = 0 by calculating ker ∂2 and H1(L) = Z
by calculating ker ∂1/ im ∂2.

(c) In Exercise 1 (c) we showed that M has a deformation retract to a circle, hence

it must have the homology of a circle.
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