Prof. Pavle Blagojević
Albert Haase
Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II - Exercise Sheet 5

Date of assignment: Thursday, Nov. 27, 2014. We highly recommend problems marked with a star.

*Exercise 1: Relative Homology

Let (X, A) be a pair of spaces, that is, X is a topological space and $A \subseteq X$.
(a) Show that the inclusion $A \hookrightarrow X$ induces induces isomorphisms on homology groups if and only if $H_{n}(X, A)=0$ for all n.
(b) Calculate the homology of an n-sphere by choosing X as the simplicial complex of all faces of an $(n+1)$-simplex and A as the subcomplex of all proper faces, that is, all faces $F \in X$ such that F is not the $(n+1)$-simplex.
(c) Show that $H_{0}(X, A)=0$ if and only if A intersects every path-component of X.
(d) Show that $H_{1}(X, A)=0$ if and only if $H_{1}(A) \longrightarrow H_{1}(X)$ is surjective and each path component of X contains at most one path component of A.
(e) Let $X=S^{2}$ and A be a finite set of points in X. Calculate $H_{*}(X, A)$.
(f) Let $X=\mathbb{R}$ and $A=\mathbb{Q} \subset \mathbb{R}$ be the set of rational numbers. Show that $H_{1}(\mathbb{R}, \mathbb{Q})$ is free abelian.
*Exercise 2: Maps and Homotopy Equivalences of Pairs of Spaces
Given pairs of spaces (X, A) and (Y, B) a map of pairs (of spaces) $f:(X, A) \longrightarrow$ (Y, B) is a continuous map $f: X \longrightarrow Y$ such that $f(A) \subseteq B$. The identity $\operatorname{id}_{(X, A)}:(X, A) \longrightarrow(X, A)$ is the identity id_{X}. A homotopy equivalence of two maps of pairs $f, f^{\prime}:(X, A) \longrightarrow(Y, B)$, denoted by $f \simeq f^{\prime}$, is given by a continuous map $F: X \times[0,1] \longrightarrow Y$ such that $F(a, t) \in B$ for all $a \in A$ and all $t \in[0,1]$ and $F(x, 0)=f(x)$ and $F(x, 1)=f^{\prime}(x)$ for all $x \in X$. A map $f:(X, A) \longrightarrow(Y, B)$ of pairs of spaces is called homotopy equivalence (of pairs) if there exists a map of pairs $g:(Y, B) \longrightarrow(X, A)$ such that $f \circ g \simeq \operatorname{id}_{(Y, B)}$ and $g \circ f \simeq \operatorname{id}_{(X, A)}$. If $A=B=\emptyset$ then we are in the case of continuous maps $X \longrightarrow Y$ and we drop the "of pairs" in our definitions.

Let $f, f^{\prime}:(X, A) \longrightarrow(Y, B)$ be maps of pairs.
(a) Let $F: f \simeq f^{\prime}$ be a homotopy of pairs. Show that F induces a homotopy between $f_{\mid A}$ and $f_{\mid A}^{\prime}$.
(b) Assume now that $f: X \longrightarrow Y$ and $g: A \longrightarrow B, g(x)=f(x)$ are both homotopy equivalences. Show that $f_{*}: H_{n}(X, A) \longrightarrow H_{n}(Y, B)$ is an isomorphism for all $n \geq 0$.
(c) Let f be the "inclusion" $\left(D^{n}, S^{n-1}\right) \hookrightarrow\left(D^{n}, D^{n} \backslash\{0\}\right)$, where D^{n} denotes the n dimensional disc and S^{n-1} denotes its boundary. Show that f is not a homotopy equivalence of pairs. Hence the hypotheses of (b) do not imply that f is a homotopy equivalence of pairs.

Exercise 3: Quotients

(a) The real projective plane $\mathbb{R} P^{2}$ can be constructed as a quotient of the 2 -disc by dividing the boundary circle of the 2-disc into two semicircles and identifying them with opposite orientations. Show that removing a closed disc from $\mathbb{R} P^{2}$ yields a Möbius strip. Construct $\mathbb{R} P^{2}$ from the unit square by identifying edges.
(b) Given a solid oriented triangle $\Delta=\left[v_{0}, v_{1}, v_{2}\right]$ in \mathbb{R}^{2}, form a quotient of Δ by identifying the two edges $\left[v_{0}, v_{1}\right]$ and $\left[v_{1}, v_{2}\right]$. What is the resulting topological space (up to homeomorphism)?
(c) Let $\Delta=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, x+y \leq 1\right\}$ and let \sim be the equivalence relation generated by $(x, 0) \sim(0, x)$ and $(x, 0) \sim(x, 1-x)$. Show that D is contractible, that is, homotopy equivalent to a point. Construct a triangulation of D.

