

Prof. Pavle Blagojević Albert Haase Prof. Holger Reich Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 8

Date of assignment: **Tuesday, Feb. 3, 2015**. We highly recommend problems marked with a star.

Exercise 1: Properties of $Hom_{\mathbb{Z}}(-, G)$

- Let A, B, G and $\{A_{\alpha} : \alpha \in J\}$ be abelian groups. Prove the following claims:
- (a) Hom $(\bigoplus_{\alpha} A_{\alpha}, G) \cong \prod_{\alpha} \text{Hom}(A_{\alpha}, G).$
- (b) If A is finitely generated, then $\operatorname{Hom}(A, \mathbb{Z}) \cong A/T(A)$ where $T(A) \subset A$ is the torsion subgroup of A.
- (c) If A is infinite cyclic, then $\operatorname{Hom}(A, G) \cong G$.

*Exercise 2: Properties of $ext_{\mathbb{Z}}^{n}(-,G)$

Let A, B, G and $\{A_{\alpha} : \alpha \in J\}$ be abelian groups. Prove the following claims:

- (a) $\operatorname{ext}_{\mathbb{Z}}^{n}(\bigoplus_{\alpha} A_{\alpha}, G) \cong \prod_{\alpha} \operatorname{ext}_{\mathbb{Z}}^{n}(A_{\alpha}, G).$
- (b) $\operatorname{ext}_{\mathbb{Z}}^{n}(A, G) = 0$ for n > 1.
- (c) $\operatorname{ext}^{1}_{\mathbb{Z}}(A, G) = 0$ if A is free abelian.
- (d) $\operatorname{ext}^0_{\mathbb{Z}}(A, G) = \operatorname{Hom}(A, G).$
- (e) If A is finitely generated, then $\operatorname{ext}^{1}_{\mathbb{Z}}(A,\mathbb{Z}) = T(A)$, where $T(A) \subset A$ is the torsion subgroup of A.

*Exercise 3: Cohomology

(a) Let X be a topological space. Denote by $H^n(X;\mathbb{Z})$ its *n*-th cohomology group with coefficients in \mathbb{Z} . Show that if the singular homology groups $H_n(X,\mathbb{Z})$ and $H_{n-1}(X,\mathbb{Z})$ are finitely generated, then

$$H^{n}(X;\mathbb{Z}) \cong \left(H_{n}(C)/T(H_{n}(C))\right) \oplus T(H_{n-1}(X)).$$

Here T(-) denotes the torsion subgroup.

(b) Let X be a topological space and let F be a field. Let $C_n(X; F)$ be the *n*th singular chain group with coefficients in F. Let $\operatorname{Hom}_F(C_n(X; F), F)$ be the set of F-vector space homomorphisms from $C_n(X; F)$ to F. Show that $\operatorname{Hom}_F(C_n(X; F), F) \cong \operatorname{Hom}_{\mathbb{Z}}(C_n(X, \mathbb{Z}), F)$ as F-vector spaces. Use this to show that

$$H^n(X; F) \cong \operatorname{Hom}_F(H_n(X; F), F)$$
 (as F-vector spaces).

- (c) Let G be an abelian group. Show that if $f: S^n \longrightarrow S^n$ has degree d, then the induced map $f^*: H^n(X; G) \longrightarrow H^n(X; G)$ is multiplication by d.
- (d) Compute the cohomology of a non-oriented surface M'_g of genus g with coefficients in Z₂ and in Z. You may assume that the singular homology of M'_g with Z coefficients is known.