Supporting Information

Wang et al. 10.1073/pnas. 0801017105

SI Materials and Methods

Plasmid Construction. CAGG-PBase (pCyL43) was constructed as follows: PBase was PCR amplified from atub-pBac-K10 (Drosophila Genomics Resource Center, Barcode1155) with primers PBase-5' (5'-GAT TAA GGA TCC AAA TGG GTA GTT CTT TAG ACG ATG AG-3') and PBase-3' (5'-CAT CTA GCG GCC GCA GTC AGA AAC AAC TTT GGC AC-3') and cut with BamHI and NotI. The fragment was ligated into a vector under the control of CAG promoter.
$P B$ transposon (pCyL50) was constructed as follows: PB-5'TR was PCR amplified from (with Drosophila Genomics Resource Center, Barcode1156) with PB-5'TR-5' (5'-GTC TTA GGT ACC TCG CGC GAC TTG GTT TGC- 3^{\prime}) and PB-5'TR-3' (5^{\prime}-CCA ATT GCT AGC CAA CAA GCT CGT CAT CGC-3') and cut with KpnI-NheI. PB-3'TR was PCR amplified with PB-3'TR-5'(5'-CGT ATG CTA GCT TAA TTA ACG AGA GCA TAA TAT TGA TAT-3') and PB-3'TR-3' (5'-GGA TAT GAG CTC GGT ATT CAC GAC AGC AGG-3') and cut with NheI-SacI. The two fragments were ligated into pBlueScript and an oligo containing AscI was inserted between NheI and SacI.

PB-PGK-Neo-bpA was constructed by cloning a PGK-EM7-Neo-bpA cassette (1) into pCyL50. Construction of $P B-S B$ hybrid transposon was as follows: SB 5' LTR was PCR amplified with primers $S B-5^{\prime}$ LTR-F (5^{\prime}-GCG ATC GCC GAG CTA CAG TTG AAG TCG GAA GTT T-3') and $S B-5^{\prime}$ LTR-R (5^{\prime}-GGA TCC GGC CGG CCC GGG CCT GCA GGC TAG AGT AAG CTT CTA AAG CCA TGA CAT CAT-3') and cut with AsiSI and BamHI. An MluI-BamHI fragment containing SB 3'LTR was cut from pQS67 (Q. Su and P. Liu, unpublished data). The two fragments were ligated into pCyL50 digested with AscI and Pacl.

PB-SB-PGK-Neo-bpA was constructed by cloning a PGK-EM7-Neo-bpA cassette into $P B-S B . P B-S B-S A-\beta g e o$ was constructed by cloning a $S A-\beta g e o$ cassette (2) into $P B-S B . P B-S B-$ SAßgeo-PGK-Bsd was constructed by inserting a PGK-EM7-Bsd$b p A$ cassette (3) into $P B-S B-S A-\beta g e o$.
The PGK-[PB-SB-SA- β geo-PGK-Bsd]-Puro cassette was con-

[^0]structed by inserting the $P B-S B-S A-\beta g e o-P G K$-Bsd cassette into PGK-Puro-bpA. The Rosa-PGK-[PB-SB-SAßgeo-PGK-Bsd]Puro single transposon targeting vector was constructed by cloning the PGK-[PB-SB-SAßgeo-PGK-Bsd]-Puro cassette into a Rosa26 targeting vector with a MC1-tk negative selection marker, pL471 (P. Liu, unpublished data). The Rosa-PBase transposase targeting vector was constructed by cloning a $S A$ -PBase-bpA cassette and a floxed $S A-N e o-b p A$ cassette into pL471.

Cell Transfection. AB1 and AB2.2 mouse ES cells were cultured as described in ref. 4. AB1 or AB2.2 cells $\left(1 \times 10^{7}\right)$ were used for each electroporation. Immediately after electroporation, cells were diluted and seeded onto $6-\mathrm{cm}$ feeder plates. G418 (150 $\mu \mathrm{g} / \mathrm{ml})$, puromycin ($3 \mu \mathrm{~g} / \mathrm{ml}$) or blasticidine ($10 \mu \mathrm{~g} / \mathrm{ml}$) selection was initiated after 48 h , and continued for 8 days. For each electroporation, diluted cells were also cultured without drug as a control for the plating efficiency. At the end of the selection, surviving colonies were stained by Methylene blue and counted after extensive washing with water.

For gene targeting, $20 \mu \mathrm{~g}$ of linearized Rosa-PGK-[PB-SB-SA-ßgeo-PGK-BsdJ-Puro, Rosa-PBase or Rosa-SB11 targeting vector were electroporated into $1 \times 10^{7} \mathrm{AB} 2.2$ cells. Rosa-PBase and Rosa-SB11 targeting were selected with $150 \mu \mathrm{~g} / \mathrm{ml}$ G418 plus $2 \mu \mathrm{M}$ gancyclovir. Rosa26-PGK-[PB-SB-SA- β geo-PGK-Bsd]Puro targeting was selected with $10 \mu \mathrm{~g} / \mathrm{ml}$ blasticidine plus $2 \mu \mathrm{M}$ gancyclovir. Correctly targeted clones were screened by longrange PCR using primers bpA-F (5^{\prime}-GAC CCT GGA AGG TGC CAC TCC CAC TG-3') and Rosa- 3^{\prime}-R (5^{\prime}-GCA TCA GGA TAA AGT TCT TGC-3'), and by Southern analysis.

For Rosa-PBase and Rosa-SB11 alleles, the loxP glanced selection marker was popped out by transient expression of Cre. $20 \mu \mathrm{~g}$ of supercoiled $P G K$-Cre-bp A plasmids were electroporated into 1×10^{7} Rosa-PBase or Rosa-SB11 cells. After electroporation, diluted cells were seeded onto feeder plates for 10 days. Single colonies were picked and confirmed by drug sib-selection and by Southern analysis.

[^1]

Fig. S1. $\quad P B$ transposition in mouse ES cells. Different amounts of CAGG-PBase helper and $P B-P G K-N e o-b p A$ donor plasmids were transfected into ES cells. Transposition efficiency was calculated as the percentage of $\mathrm{G} 418^{\mathrm{R}}$ cells verses all of the cells surviving the electroporation. The transposition efficiency of each combination is the average obtained from three independent experiments.

Fig. S2. Characterization of $P B$ transposon from Rosa26 locus by Southern analysis. A $b p A$ probe was used to detect excision and reintegration of $P B$ transposon. Three copies of the bpA sequence are present both inside and outside the transposon in the targeted cassette, which are in the β geo, Bsd and Puro selection markers, respectively. EcoRV digestion identifies two restriction fragments, 3.1 kb and 5.3 kb , in the transposon targeted clones. When the transposon is mobilized, the $3.1-\mathrm{kb}$ fragment changes to 3.8 kb . If the excised transposon reintegrates into the ES cell genome, the $5.3-\mathrm{kb}$ EcoRV fragment will remain unchanged.
clone 3-5

clone 4-

clone 4-2

Fig. S3. Disruption of the Hprt locus by PB transposon integration. Transposon integration sites in three independent 6-TGR clones were mapped to the $H p r t$ introns 1 (clone 4-1), 2 (clone 4-2), and 4 (clone 3-5), respectively. Analysis of the RT-PCR products from these clones identified the anticipated Hprt-LacZ fusion transcripts as depicted.

Fig. S4. $\quad P B 5^{\prime} T R$ is mutagenic. In one of the $6-\mathrm{TG}^{R}$ clones (clone $3-6$), $P B$ integrates into Hprt intron 1 in the opposite direction to the other PB integrations shown in Fig. S3. Sequence analysis of the RT-PCR products demonstrated that a 74 -bp PB 5'TR sequence was inserted in between Hprt exons 1 and 2 and caused a frame shift in the Hprt fusion transcript. This fusion transcript suggests that PB $5^{\prime} T R$ contains a pair of cryptic splice acceptor and donor sequences.

Table S1. Direct comparision of PB and SB transposon systems.

Cell line	Transposon	Average trapping efficiency
ROSA-SB11 KI	$10 \mu \mathrm{~g}$ of methylated PB-SB-SA- β geo	0.000017 ± 0.000005
ROSA-SB11 KI	10μ g of unmethylated PB-SB-SA- β geo	0.000002 ± 0.000000
ROSA-IFP2 KI	10μ g of methylated PB-SB-SA- β geo	0.000278 ± 0.000013
ROSA-IFP2 KI	10μ g of unmethylated PB-SB-SA- β geo	0.003275 ± 0.000338
ROSA-SB11 KI	$1 \mu \mathrm{~g}$ of PB-SB-pGK-Neo	0.000027 ± 0.000005
ROSA-SB11 KI	10μ g of PB-SB-pGK-Neo	0.000253 ± 0.000020
ROSA-IFP2 KI	$1 \mu \mathrm{~g}$ of PB-SB-pGK-Neo	0.035371 ± 0.002362
ROSA-IFP2 KI	10μ g of PB-SB-pGK-Neo	0.170960 ± 0.008113

Other Supporting Information Files

Dataset S1
Dataset S2
Dataset S3
Dataset S4
Dataset S5
Dataset S6
Dataset S7
Dataset 58

[^0]: 1. Liu P, Jenkins NA, Copeland NG (2003) Genome Res 13:476-484.
 2. Zambrowicz BP, et al. (1997) Proc Natl Acad Sci USA 94:3789-3794.
[^1]: 3. Liu P, Jenkins NA, Copeland NG (2002) Nat Genet 30:66-72.
 4. Ramirez-Solis R, Davis AC, Bradley A (1993) Methods Enzymol 225:855-878
