CELL CULTURE

1. CFBE/ HBE cells

16HBE14o- cells

Human bronchial epithelial cells, have the ability to polarize immortalised cell line generated from a one-year-old heart-lung transplant patient non-secreting phenotype

CFBE410- cells

Cystic fibrosis bronchial epithelial cell line, generated by transformation of tracheo-bronchial cells with SV40 from cystic fibrosis, homozygous for $\Delta F508$ mutation, form electrically tight and polarised monolayers with functional cell-cell contacts

Coating

For growth of cells obtained from the Grünert laboratory culture flasks were coated with a fibronectin/collagen/BSA coating solution made up with the following components;

100ml LHC-8 basal medium (Gibco, 12678-017)

10ml Bovine serum albumin (BSA, 1mg/ml) (Sigma, A9647)

1ml Collagen I, bovine (2.9mg/ml) (BD Laboratories, 40231)

1ml Human fibronectin (1mg/ml) (Calbiochem, 341635)

Approximately 3-4ml of coating solution was transferred aseptically into 75cm² flasks and swirled around to ensure complete coverage of the flask base. Flasks were allowed to sit for a minimum of 2h in the incubator, following which excess solution was removed. Flasks were then stored at room temperature for up to one month in their original packaging.

Medium

All in vitro cell lines were routinely grown in minimum essential media (MEM,

- + 10% FBS
- + 1% L-Glutamine
- + 1% Penicillin-Streptomycin

in collagen-coated 75cm² flasks and maintained in a 37 °C humidified incubator containing 5% CO₂. Cultures were renewed from frozen stocks every 4-6 weeks. For experiments, cells were sub-cultured once 60-90% confluency was achieved.

Polarized cell culture

Air-interfaced condition

Cells are seeded at a density of 500.000 cells/ $1.12~\text{cm}^2$ on filter inserts and after 48 hours the apical fluid is removed. CFBE410- cells grown to grown to confluent monolayers on filter inserts under air-interfaced culture conditions for 12 days. Transepithelial electrical resistance (TEER) measurements were taken every 48h (with the medium change, CAVE for measurement: fill up the apical side) using the EVOM epithelial voltohmmeter (World Precision Instruments; EVOM2, Epithelial Voltohmmeter for TEER) according to manufacturer's instructions and converted to $\Omega.\text{cm}^2$ based on surface area of cell culture inserts.

Figure 1.Transepithelial resistances were monitored in 16HBE14o- and CFBE41o- cells grown on Snapwell inserts under **air-interfaced culture conditions**. Cells were seeded at a density of 5×10^5 cells/cm². Each data point represents means \pm SD (n=3) from one passage (Johanna Salomon, Heidelberg).

Liquid-liquid condition

CFBE41o- cells were grown as polarized cultures at a liquid-liquid interface. Cells (8 x 10^4) were seeded onto 1.0µm Polyethylene therephthalate (PET) transparent Millicell hanging cell culture inserts (Millipore) and maintained in MEM+GlutaMax supplemented with 10% fetal calf serum and 1% penicillin-streptomycin. Apical (0.2 ml) and basolateral (1.25 ml) media were changed every alternate day. Once TEER>1000 Ω .cm2 was achieved (indicating confluent monolayer formation -approximately 14-21 days- LCC), cells were used for experiments.

Figure 2. CFBE41o- cell cultures were grown on semi-permeable supports until a polarized epithelium was obtained. TEER values were taken every 48h over 18 days of cultures at varying cell densities. Optimal TEER (>1000 Ω .cm2) was obtained in 10-14 days utilizing 8 x 10^4 cells (C. Greene, Dublin).