FREIE UNIVERSITÄT BERLIN Institut für Mathematik Prof. Günter M. Ziegler Albert Haase Geometrie SoSe 2013

1. Übungsblatt Geometrie

Abgabe bis spätestens Freitag, den 19.4.2013, vor der Vorlesung.

Vergesst nicht, euren Namen, eure Matrikel- und die Blattnummer sowie den Namen eures Tutors auf der ersten Seite zu vermerken. Bitte die Lösungen *tackern*! Die Korrektur erhaltet ihr im Tutorium.

Aufgabe 1: Skalarprodukt und Winkel

(3+4+1 (+2) Punkte)

- a) Gegeben seien Vektoren $v := \begin{pmatrix} 3 & -1 & 2 \end{pmatrix}^t$ und $w := \begin{pmatrix} 0 & 4 & -5 \end{pmatrix}^t$ im \mathbb{R}^3 . Stehen v und w senkrecht aufeinander? Berechne die Projektion von v auf w und umgekehrt (Ergebnis ist jeweils ein Vektor).
- b) Gegeben seien alle Vektoren des \mathbb{R}^4 , die jeweils 2 Nullen und 2 Einträge der Form ± 1 enthalten; zum Beispiel (0,1,-1,0). Wie viele sind es insgesamt? Die konvexe Hülle dieser Vektoren wird als 24-Zell bezeichnet. Berechne die Längen der Vektoren. Wie lautet der minimale Winkel zweier solcher Vektoren?
- c) Was kann unter Verwendung von b) über die Kusszahl¹ K(4) ausgesagt werden? Zusatzaufgabe: Küssen manche Sphären nicht nur eine?

Aufgabe 2: Transformationen

(2+2+2 Punkte)

- a) Gegeben sei eine euklidische Bewegung (Isometrie) im \mathbb{R}^n der Form Ax+b. Berechne ihre Inverse.
- b) Betrachten wir den n-dimensionalen Würfel $[0,1]^n$. Gib zunächst für n=2 und n=3 eine orthogonale Abbildung (als Matrix) an, die die Ecke $(1,\ldots,1)$ auf $(0,\sqrt{2})$ bzw. $(0,0,\sqrt{3})$ abbildet.
- c) Verallgemeinere b) auf den Fall $n \in \mathbb{N}_{>0}$.

Aufgabe 3: Unterräume, kürzester Abstand

(2+2+2) Punkte

- a) Gesucht sind zwei zweidimensionale Ebenen im \mathbb{R}^4 , die sich in genau einem Punkt schneiden. Gib jeweils eine äußere und innere Beschreibung an und beweise die Aussage.
- b) Angenommen $H = \{ x \in \mathbb{R}^n \mid \langle x, a \rangle = \alpha \}$ ist eine äußere Beschreibung einer Hyperebene. Was ist der Abstand von H zum Ursprung? Liegt a in H?
- c) Seien $p \in \mathbb{R}^n$ und U ein affiner Unterraum des \mathbb{R}^n der Dimension k für 0 < k < n. Zeige, dass die Orthogonalprojektion von p auf U der einzige Punkt ist, der unter allen Punkten aus U minimalen Abstand zu p hat.

¹Zur Definition der Kusszahl siehe Wikipedia. Der Radius der Sphären darf beliebig (aber für alle gleich und > 0) gewählt werden. Warum?