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Problem 1: Product and Minkowski Sum (2 + 2 + 2 (+2) + 2 Points)

Let P1 and P2 be two polytopes of dimensions d1 respectively d2.

(a) Show that the Cartesian product P1×P2 is a polytope. What is the dimension
of P1 × P2 ?

(b) Prove that for every non-empty face F of P1×P2 there are unique faces F1 ⊆ P1

and F2 ⊆ P2 such that F = F1 × F2.

(c) Assume P1 and P2 are both polytopes in Rd for some d ≥ 0. Show that the
Minkowski sum

P1 + P2 := {p1 + p2 : p1 ∈ P1 and p2 ∈ P2}

of P1 and P2 is a polytope. Bonus: Prove that if the Minkowski sum of two
convex sets K1, K2 ⊆ Rd is a polytope, then both K1 and K2 are polytopes.

(d) Show that if F is a non-empty face of P1 + P2, there are faces Fi ⊆ Pi such
that F = F1 + F2 and that the choice of F1 and F2 is unique.

Problem 2: Crosspolytope (3 + 3 Points)

For d ≥ 1 the d-dimensional crosspolytope is given by

C4
d := conv{±e1,±e2, . . . ,±ed}.

Here ei denotes the i-th standard basis vector of Rd.

(a) Let u, v ∈ {±e1,±e2, . . . ,±ed} be given such that u 6= ±v. Show that the
interval [u, v] = conv{u, v} is an edge of C4

d .

(b) Let P = conv(V ) be a polytope and V its set of vertices. We call P centrally
symmetric if −P = P . Show that a polytope P is centrally symmetric if and
only if P is the image under a linear map of the n-dimensional crosspolytope
C4

n with n = 1
2
|V |.
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Problem 3: Adjacent Vertices – Tetrahedron (6 Points)

Let P be a polytope. Recall that vertices of P are 0-dimensional faces of P and
edges of P are 1-dimensional faces of P . Two distinct vertices x and y of P are
adjacent if there is an edge e of P that has x and y as faces.

Let P now be 3-dimensional and assume that every two distinct vertices of P are
adjacent. Show that P is a tetrahedron, that is, a 3-dimensional simplex.

Hint: Adroitly apply Radon’s Theorem.
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