

Prof. Günter M. Ziegler Albert Haase, Marie Litz Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Discrete Geometry 1 – Problem Sheet 10

Please hand in your solutions to Prof. Ziegler on Wednesday, Jan. 15, 2014 before the lecture begins.

Problem 1: Calculate an h-Vector

(6 Points)

Let C_d^{Δ} denote the d-dimensional crosspolytope. Find and describe a suitable shelling of $\mathcal{C}(\partial C_d^{\Delta})$ and compute the h-vector of C_d^{Δ} .

Problem 2: Dehn-Sommerville Equations

(2+2 Points)

Let P be a simplicial d-polytope.

- (a) Check that the Dehn-Sommerville equations for d=4 are equivalent to the two linear relations $f_0(P) f_1(P) + f_2(P) f_3(P) = 0$ and $f_2(P) = 2f_3(P)$.
- (b) For d = 5, find a linear relation that follows from the Dehn-Sommerville equations but is independent of the Euler-Poincaré relation and $2f_3(P) = 5f_4(P)$.

Problem 3: f-Vectors of Neighborly Polytopes

(2+2+2 Points)

- (a) Compute the f-vector of the cyclic polytope $C_4(7)$.
- (b) Prove the following statement: The f-vectors of all neighborly simplicial polytopes of dimension d on n vertices are identical.
- (c) What is the maximal possible number of vertices in a simple 5-polytope with 8 facets?

Problem 4: Shellings for the Cube

(3+3 Points)

- (a) How many different shellings are there for the (boundary of the) 3-dimensional cube C_3 ?
- (b) Show (using induction on the dimension d) that a facet ordering F_1, \ldots, F_{2d} of the d-cube C_d is not a shelling if and only if F_1, \ldots, F_{2j} consists of j pairs of opposite facets, for some $j, 1 \leq j < d$.