

Prof. Günter M. Ziegler Albert Haase, Marie Litz Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Discrete Geometry 1 – Problem Sheet 12

Please hand in your solutions to Prof. Ziegler on Wednesday, Jan. 29, 2014 before the lecture begins.

Problem 1: Points in Convex Position

(2+6 Points)

Recall that a set $X \subset \mathbb{R}^d$ is in convex position if for every $x \in X$ we have $x \notin \text{conv}(X \setminus \{x\})$.

- (a) Find a configuration of 8 points in general position in the plane such that no 5 of its points are in convex position. Hence you are showing that the "Erdős–Szekeres number" n(5) > 8.
- (b) Prove that for each $k \ge 1$ there exists a number m(k) such that any m(k) points in the plane contain k points in convex position or k points on a line.

Problem 2: Dual Configurations

(4+4 Points)

- (a) Translate the Sylvester–Gallai Theorem into the dual setting of line arrangements. (In your statement, be careful about parallel lines etc.)
- (b) Translate the Erdős–Szekeres Theorem into the dual setting of line arrangements. What is the dual statement to existence of k-caps or k-cups in every sufficiently large point configuration in general position?

Problem 3: Hyperplane Arrangements

(4(+6) Points)

- (a) Consider the arrangement \mathcal{H} of hyperplanes given by the equations $x_i = x_j$ for $1 \le i < j \le d$. Draw a picture of \mathcal{H} in dimension 3. How many d-dimensional cells does \mathcal{H} have?
- (b) Bonus: Consider the arrangement \mathcal{H}' of hyperplanes given by the equations $x_i = \pm x_j$ for $1 \le i < j \le d$. Draw a picture of \mathcal{H}' in dimensions 2 and 3. How many d-dimensional cells does \mathcal{H}' have?