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Problem 1: Transportation Polytopes (3+3 Points)

Let m,n ≥ 1 and a ∈ Rm and b ∈ Rn be given such that ai, bj > 0 and ∆ =∑m
i=1 ai =

∑n
j=1 bj. We call

P = P (m,n; a, b) :=
{

(xij)ij ∈ Rm×n :xij ≥ 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
m∑
i=1

xij = bj for 1 ≤ j ≤ n,

n∑
j=1

xij = ai for 1 ≤ i ≤ m
}

a transportation polytope.

(a) What is the dimension of P (m,n; a, b)?

(b) Let m = n and a = b = (1, . . . , 1). How many vertices and how many facets
does this P (m,n; a, b) have? Give an explanation.

(c) Describe a point that lies in P (m,n; a, b).
Hint: Show that xij = 1

n2 yields a point for the special case of part (b). Then
generalize to the case where ai = 1

n
and bj = 1

m
. Then generalize further.

Problem 2: Combinatorial Isomorphisms (2+2(+2) Points)

Two polytopes P1, P2 are called combinatorially isomorphic if their face lattices are
isomorphic.

(a) Find two simplicial 3-polytopes with 6 vertices each that are not combinatori-
ally isomorphic.

(b) Find two combinatorially non-isomorphic 3-polytopes P1 and P2 with the same
sets of vertex figures. To be more precise, there must exist a bijection ι : V1 →
V2 between the vertex sets of P1 and P2 such that the vertex figure of v is
combinatorially isomorphic to the vertex figure of ι(v), for all v ∈ V1.
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(c) Bonus: Find two combinatorially non-isomorphic 4-polytopes P1 and P2 with
the same sets of vertex figures.

Problem 3: Minkowski–Weyl Representation Theorem (4+3+3 Points)

For d ≥ 1 let

Cd = [−1, 1]d be the d-dimensional unit cube and

C∗
d = conv {±e1, . . . ,±ed} be the d-dimensional crosspolytope.

For 0 ≤ n ≤ d let fn and f ∗
n denote the number of n-dimensional faces of Cd and of

C∗
d , respectively.

(a) Verify the Minkowski–Weyl Representation Theorem for the polytopes C3 and
C∗

3 . In other words, calculate V- and H-representations for both polytopes.

(b) Describe the k-dimensional faces of Cd and calculate f0, . . . , fd.

(c) Describe the k-dimensional faces of C∗
d and calculate f ∗

0 , . . . , f
∗
d .
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