Prof. Günter M. Ziegler Albert Haase, Marie Litz Institut für Mathematik Arbeitsgruppe Diskrete Geometrie ## Discrete Geometry 1 – Problem Sheet 4 Please hand in your solutions to Prof. Ziegler on Wednesday, Nov. 13, 2013 before the lecture begins. Please put your name and student ID (if you have one) on the first page of your solutions and staple the sheets together. ## **Problem 1:** Transportation Polytopes (3+3 Points) Let $m, n \geq 1$ and $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$ be given such that $a_i, b_j > 0$ and $\Delta = \sum_{i=1}^m a_i = \sum_{j=1}^n b_j$. We call $$P = P(m, n; a, b) := \{(x_{ij})_{ij} \in \mathbb{R}^{m \times n} : x_{ij} \ge 0 \text{ for } 1 \le i \le m, \ 1 \le j \le n,$$ $$\sum_{i=1}^{m} x_{ij} = b_j \text{ for } 1 \le j \le n,$$ $$\sum_{j=1}^{n} x_{ij} = a_i \text{ for } 1 \le i \le m \}$$ ## a transportation polytope. - (a) What is the dimension of P(m, n; a, b)? - (b) Let m = n and a = b = (1, ..., 1). How many vertices and how many facets does this P(m, n; a, b) have? Give an explanation. - (c) Describe a point that lies in P(m, n; a, b). Hint: Show that $x_{ij} = \frac{1}{n^2}$ yields a point for the special case of part (b). Then generalize to the case where $a_i = \frac{1}{n}$ and $b_j = \frac{1}{m}$. Then generalize further. ## **Problem 2:** Combinatorial Isomorphisms (2+2(+2) Points) Two polytopes P_1 , P_2 are called *combinatorially isomorphic* if their face lattices are isomorphic. - (a) Find two simplicial 3-polytopes with 6 vertices each that are not combinatorially isomorphic. - (b) Find two combinatorially non-isomorphic 3-polytopes P_1 and P_2 with the same sets of vertex figures. To be more precise, there must exist a bijection $\iota \colon V_1 \to V_2$ between the vertex sets of P_1 and P_2 such that the vertex figure of v is combinatorially isomorphic to the vertex figure of $\iota(v)$, for all $v \in V_1$. (c) Bonus: Find two combinatorially non-isomorphic 4-polytopes P_1 and P_2 with the same sets of vertex figures. **Problem 3:** Minkowski-Weyl Representation Theorem (4+3+3 Points)For $d \ge 1$ let $$C_d = [-1, 1]^d$$ be the *d*-dimensional unit cube and $C_d^* = \text{conv}\{\pm e_1, \dots, \pm e_d\}$ be the *d*-dimensional crosspolytope. For $0 \le n \le d$ let f_n and f_n^* denote the number of *n*-dimensional faces of C_d and of C_d^* , respectively. - (a) Verify the Minkowski-Weyl Representation Theorem for the polytopes C_3 and C_3^* . In other words, calculate \mathcal{V} and \mathcal{H} -representations for both polytopes. - (b) Describe the k-dimensional faces of C_d and calculate f_0, \ldots, f_d . - (c) Describe the k-dimensional faces of C_d^* and calculate f_0^*, \ldots, f_d^* .