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Problem 1: Vertices and Facets of a Direct Sum (4+3+1(+2) Points)

Let ∆d ⊂ Rd denote a d-simplex with the origin in its interior. The direct sum or
free sum of ∆d with itself is defined as

∆d ⊕∆d := conv
( {

(p, 0) ∈ R2d : p ∈ ∆d

}
∪
{

(0, p′) ∈ R2d : p′ ∈ ∆d

} )
⊂ R2d.

(a) Is ∆d⊕∆d a polytope? How many vertices and how many facets does ∆d⊕∆d

have? What is its dimension?

(b) State the vertex-facet incidence Matrix I = I(∆d ⊕∆d) of ∆d ⊕∆d.

(c) Which combinatorial properties does ∆d ⊕ ∆d have that can be immediately
determined from I?

(d) Bonus: What does I t describe? Explain.

Problem 2: Polarity (4+2 Points)

(a) Compute explicitly and draw the polars of the following rectangles in the plane:

(i) R1 with vertices (0, 0), (M, 0), (M, 1) and (0, 1), for M > 0 large.
(ii) R2 with vertices (−ε,−ε), (M,−ε), (M, 1) and (−ε, 1), for M > 0 large

and ε > 0 small.
(iii) R3 with vertices (ε, ε), (M, ε), (M, 1) and (ε, 1), for M > 0 large and ε > 0

small.

(b) What happens in (ii) and (iii) if ε→ 0 or M →∞? Give an explanation.
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Problem 3: A vertex-facet incidence matrix (6 Points)

Is this the vertex-facet incidence matrix of a convex polytope? If yes, how many
vertices and how many facets does it have? What is its dimension? What else can
you say about it? Can you draw it?

I =



1 0 1 1 0 0 0
1 1 1 0 0 0 0
1 1 0 0 1 1 0
0 1 0 0 0 1 1
0 0 0 1 0 1 1
0 0 1 1 0 0 1
1 0 0 1 1 0 0
0 0 0 1 1 1 0
0 1 1 0 0 0 1



Problem 4: Bonus Problem: Farkas Lemma ((6) Points)

Given a vector x ∈ Rd, the relation x ≥ 0 means that all components xi for
i = 1, . . . , d are non-negative. Consider the following version of Farkas’ Lemma:

Let A ∈ Rm×d and a ∈ Rm. Either there is an x ∈ Rd such that Ax = a and x ≥ 0,
or there is a vector c ∈ Rm such that ctA ≥ 0 and cta < 0, but not both.

Show that this version of Farkas’ Lemma is equivalent to the one stated in the
lecture (Proposition 2.61 of the lecture notes).
(Note: This is a corrected version – the vector c need not satisfy c ≥ 0.)

2


