

Prof. Günter M. Ziegler Albert Haase, Marie Litz Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Discrete Geometry 1 – Problem Sheet 9

Please hand in your solutions to Prof. Ziegler on Wednesday, Dec. 18, 2013 before the lecture begins.

Problem 1: The "cube slice polytopes"

(17(+4) Points)

For $1 \le k \le d$ let

$$\Delta_{d-1}(k) := \{ x \in [0,1]^d : x_1 + \dots + x_d = k \}$$
$$= \operatorname{conv} \{ x \in \{0,1\}^d : x_1 + \dots + x_d = k \}.$$

(i) Show that $\Delta_{d-1}(k)$ is affinely equivalent to

$$\Delta'_{d-1}(k) := \{ x \in [0, 1]^{d-1} : k - 1 \le x_1 + \dots + x_{d-1} \le k \}$$
$$= \operatorname{conv} \{ x \in \{0, 1\}^{d-1} : k - 1 \le x_1 + \dots + x_{d-1} \le k \}.$$

(2 Points)

- (ii) Describe $\Delta_3(2)$. (1 Point)
- (iii) Study how the hyperplane $H_k = \{x \in \mathbb{R}^d : x_1 + \dots + x_d = k\}$ cuts the faces of the d-cube $[0,1]^d$. What do the resulting faces look like? Conversely, describe how the faces of $\Delta_{d-1}(k)$ arise from faces of $[0,1]^d$. (Hint: Distinguish vertices from higher dimensional faces!) (2 Points)
- (iv) Let $k \in \{1, ..., d-1\}$. Show that the \mathcal{H} -description and the \mathcal{V} -description in the definition of $\Delta_{d-1}(k)$ give the same (d-1)-polytope. (2 Points)
- (v) Show that $\Delta_{d-1}(k)$ and $\Delta_{d-1}(d-k)$ are combinatorially equivalent. (1 Point)
- (vi) Show that for even d, $\Delta_{d-1}(\frac{d}{2})$ is *centrally symmetric*, i.e. there is a center point c such that for all $x \in \mathbb{R}^d$, $c+x \in \Delta_{d-1}(\frac{d}{2})$ if and only if $c-x \in \Delta_{d-1}(\frac{d}{2})$. (1 Point)
- (vii) Show that $\Delta_{d-1}(1)$ and $\Delta_{d-1}(d-1)$ are simplices. (1 Point)
- (viii) Show that for 1 < k < d-1, $\Delta_{d-1}(k)$ has 2d facets. What are their combinatorial types? There are two different combinatorial types, except in the case

$$k = \frac{d}{2}$$
. (2 Points)

- (ix) A polyope is k-simple if its dual is k-simplicial. Show that $\Delta_{d-1}(k)$ is 2-simplicial and (d-2)-simple. (2 Points)
- (x) Describe $\Delta_4(2)$: compute the f-vector, describe the facets. (1 Point)
- (xi) Bonus: Show that the f-vector of $\Delta_{d-1}(k)$ is given by

$$f_{i-1}(\Delta_{d-1}(k)) = \left| \{ [d] = A \uplus B \uplus C : |A| < k, |B| < d - k, |C| = i \} \right|$$

$$= \sum_{\substack{0 \le s < k \\ k < s + i \le d}} {d \choose s} {d - s \choose i}$$

$$= \sum_{\max\{-1, k - i\} < s < \min\{k, d - i + 1\}} \frac{d!}{s! i! (d - s - i)!}$$

for i > 1. How about f_0 ?

(Hint: Every *i*-face of $[0,1]^d$ can be described in the form

$$\{x \in \mathbb{R}^d : x_j = 1 \text{ for } j \in A, x_j = 0 \text{ for } j \in B, 0 \le x_j \le 1 \text{ for } j \in C\},$$

for suitable sets A, B, C satisfying $A \uplus B \uplus C = [d]$ and |C| = i.) ((4) Points)

(xii) Compute and plot the f-vector of $\Delta_{41}(21)$. You may use (xi). (2 Points)