

Prof. Günter M. Ziegler Albert Haase, Marie Litz Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Discrete Geometry II – Problem Sheet 3

Please hand in your solutions to Prof. Ziegler on **Tuesday**, **May 13**, **2014** before the lecture begins.

Problem 1: Convex hulls

(6 Points)

(8 Points)

(6 Points)

- (a) Give an example of a closed subset of \mathbb{R}^2 whose convex hull is not closed.
- (b) Prove that the convex hull of an open set in \mathbb{R}^d is open.

Problem 2: Convex bodies

Recall that a subset $C \subset \mathbb{R}^d$ is called a *convex body* if it is convex, compact, and full-dimensional.

- (a) Determine the cardinality of the set of convex bodies in \mathbb{R}^2 .
- (b) Show that there is a sequence K_1, K_2, \ldots of convex bodies in \mathbb{R}^2 such that for every $\varepsilon > 0$ and for each convex body $C \subset \mathbb{R}^2$, there is some *i* such that $K_i \subseteq C$ and $\operatorname{vol}(K_i) \ge (1 - \varepsilon) \operatorname{vol}(C)$.¹

Problem 3: Extreme and exposed points

Let $C \subseteq \mathbb{R}^d$ be a non-empty convex set.

- (a) A point z ∈ C is called an *extreme point* of C if for every x, y ∈ C, z ∈ conv{x, y} if and only if z = x or z = y.
 Show that z is an extreme point of C if and only C \ {z} is convex. Infer that if X is a finite set and z ∈ conv(X) is an extreme point, then z ∈ X.
- (b) A point $z \in C$ is called an *exposed point* of C if there is a vector $c \in \mathbb{R}^d$ such that $c^t z > c^t x$ for all $x \in C \setminus \{z\}$. Show that every exposed point is extreme, but extreme points are not exposed in general.
- (c) Let $z \in C$ be a point such that $||z||_p \ge ||y||_p$ for some $1 and for all <math>y \in C$. Show that z is an exposed point of C.

 $^{^1\}mathrm{To}$ be more precise, we could say that "vol" is the two-dimensional Lebesgue measure.