

Prof. Günter M. Ziegler Albert Haase, Miriam Schlöter Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

(6 Points)

Discrete Geometry II – Problem Sheet 4

Please hand in your solutions to Prof. Ziegler on Tuesday, May 20, 2014 before the lecture begins.

Problem 1: The relative interior of a convex set is convex (2+2+2 Points)Let us prove the first part of Proposition 3.11 from the lecture, which asserts that for every convex set K the relative interior relint (K) is also convex. Consider two points x_0 and x_1 in relint (K) together with epsilon balls $B_{\varepsilon_0}(x_0)$ and $B_{\varepsilon_1}(x_1)$ contained in

- relint(K). Let $x = \lambda x_0 + (1 \lambda)x_1$ for $\lambda \in (0, 1)$ and define $\varepsilon := \lambda \varepsilon_0 + (1 \lambda)\varepsilon_1$. (a) Show that $B_{\varepsilon}(x) \subset \text{conv}(B_{\varepsilon_0}(x_0) \cup B_{\varepsilon_1}(x_1))$. This implies that $x \in \text{relint}(K)$.
- (b) Show that the choice of ε is maximal in order for the claim in (a) to hold.
- (c) Show that if $x_0 \in \operatorname{relint}(K)$ and $x_2 \in K$, the point $\lambda x_0 + (1 \lambda)x_2 \in \operatorname{relint}(K)$ for $0 < \lambda \le 1$.

Problem 2: Intersections of convex sets

Let $n \geq d+1$ and let A_1, A_2, \ldots, A_n and C be convex subsets of \mathbb{R}^d . Assume that for any (d+1)-element index set $I \subseteq \{1, \ldots, n\}$ there is a $t_I \in \mathbb{R}^d$ such that

$$t_I + C \subseteq \bigcap_{i \in I} A_i.$$

Show that there is a $t_0 \in \mathbb{R}^d$ such that $t_0 + C \subseteq A_i$ for all i = 1, ..., n. *Hint:* Do induction on n and apply Radon's Theorem.

Problem 3: Carathéodory's Theorem in a special case (8(+2) Points)

A topological space $X \subseteq \mathbb{R}^d$ is *path-connected* if any two points $x_0, x_1 \in X$ can be connected by a continuous path, that is, a continuous map $\gamma \colon [0,1] \longrightarrow X$ such that $\gamma(0) = x_0$ and $\gamma(1) = x_1$.

- (a) Let A be a convex body in \mathbb{R}^d . Show that if the set of extreme points $\operatorname{ext}(A)$ of A is path-connected, then every point in A lies in the convex hull of d points from $\operatorname{ext}(A)$. This improves the bound of d+1 points in Carathéodory's Theorem by 1. *Note:* This is not an easy exercise. Do the best you can while still being explicit in your proof.
- (b) Bonus: Is (a) still true if we weaken the assumption that ext(A) is path-connected and ask that ext(A) only be connected (the other assumptions remain unchanged)?