Prof. Günter M. Ziegler

Albert Haase, Miriam Schlöter

Institut für Mathematik
Arbeitsgruppe Diskrete Geometrie

Discrete Geometry II - Problem Sheet 6 Solution to Problem 1c

Problem 1: Convex bodies, polars, and ellipsoids (8(+2) Points)

(c) Let E be an ellipsoid centered at the origin given by $E=\left\{x \in \mathbb{R}^{d}:\langle Q x, x\rangle \leq 1\right\}$, where Q is a positive definite matrix. Show that $E^{*}=\left\{y \in \mathbb{R}^{d}:\left\langle Q^{-1} y, y\right\rangle \leq 1\right\}$.

Proof. To begin with, we will prove two facts:

- Fact 1: Given a nonempty set $K \subseteq \mathbb{R}^{d}$ and an invertible linear transformation A on \mathbb{R}^{d}, we have

$$
(A K)^{*}=\left(A^{t}\right)^{-1} K^{*}
$$

where the asterisk denotes the polar.

- Fact 2: If B_{d} denotes the d-dimensional unit ball, then

$$
B_{d}^{*}=B_{d}
$$

Proof of Fact 1. This was shown in class on Thursday, June 5. Let us recall it:

$$
\begin{aligned}
(A K)^{*} & =\left\{y \in \mathbb{R}^{d}: y^{t} A x \leq 1 \forall x \in K\right\} \\
& =\left\{y \in \mathbb{R}^{d}:\left(A^{t} y\right)^{t} x \leq 1 \forall x \in K\right\} \\
& =\left\{\left(A^{t}\right)^{-1} A^{t} y: y \in \mathbb{R}^{d},\left(A^{t} y\right)^{t} x \leq 1 \forall x \in K\right\} \\
& =\left\{\left(A^{t}\right)^{-1} z: z \in \mathbb{R}^{d}, z^{t} x \leq 1 \forall x \in K\right\} \\
& =\left(A^{t}\right)^{-1}\left\{z \in \mathbb{R}^{d},: z^{t} x \leq 1 \forall x \in K\right\} \\
& =\left(A^{t}\right)^{-1} K^{*} .
\end{aligned}
$$

Proof of Fact 2.

$$
\begin{aligned}
B_{d}^{*} & =\left\{y \in \mathbb{R}^{d}: y^{t} x \leq 1 \forall x \in B_{d}\right\} \\
& =\left\{y \in \mathbb{R}^{d}: \max _{\|x\| \leq 1} y^{t} x \leq 1\right\} \\
& \subseteq\left\{y \in \mathbb{R}^{d}: \max _{\|x\| \leq 1}\|y\|\|x\| \leq 1\right\} \\
& =\left\{y \in \mathbb{R}^{d}:\|y\| \leq 1\right\} \\
& =B_{d},
\end{aligned}
$$

where the (third) inclusion is due to the Cauchy-Schwarz inequality. For the reverse inclusion, let $x_{0} \in B_{d}$ and let $x \in \mathbb{R}^{d}$ such that $\|x\| \leq 1$, then $x_{0}^{t} x \leq\left\|x_{0}\right\|\|x\| \leq 1$ and hence, $x \in B_{d}^{*}$.

The matrix Q can be written as $Q=U^{t} D U$ for an orthogonal matrix U and a diagonal matrix D with (strictly) positive entries. Hence Q can be written as $Q=L^{t} L$, where $L=\sqrt{D} U$.

Finally, let's prove the original claim in 1(c). Let

$$
S:=\left\{y \in \mathbb{R}^{d}:\left\langle Q^{-1} y, y\right\rangle \leq 1\right\} .
$$

Let $A:=L^{-1}$ and $K:=B_{d}$ in Fact 1. Then,

$$
\begin{aligned}
E^{*} & =\left(L^{-1} B_{d}\right)^{*} \\
& =L^{t} B_{d}^{*} \\
& =L^{t} B_{d} \\
& =S,
\end{aligned}
$$

where the first equality is a simple calculation, the second is due to Fact 1, the third is due to Fact 2, and the last is again a simple calculation. For the simple calculations use that the inverse of a transpose is the transpose of its inverse, and the fact that inverses of symmetric matrices are symmetric.

