Prof. Günter M. Ziegler
Albert Haase, Miriam Schlöter

Discrete Geometry II - Problem Sheet 6

Please hand in your solutions to Prof. Ziegler on Tuesday, June 03, 2014 before the lecture begins.

Problem 1: Convex bodies, polars, and ellipsoids
Given a set $A \subseteq \mathbb{R}^{d}$, the polar of A, denoted by A^{*}, is defined as

$$
A^{*}:=\left\{y \in \mathbb{R}^{d}:\langle y, x\rangle \leq 1 \text { for all } x \in A\right\} .
$$

Let K be a (full-dimensional) convex body containing the origin in its interior.
(a) Show that K^{*} is a convex body containing the origin in its interior.
(b) Show that $\left(K^{*}\right)^{*}=K$.
(c) Let E be an ellipsoid centered at the origin given by $E=\left\{x \in \mathbb{R}^{d}:\langle Q x, x\rangle \leq 1\right\}$, where Q is a positive definite matrix. Show that $E^{*}=\left\{y \in \mathbb{R}^{d}:\left\langle Q^{-1} y, y\right\rangle \leq 1\right\}$.
(d) Bonus: Show that the image of an ellipsoid under a surjective affine map is again an ellipsoid.

Problem 2: Löwner-John: maximal volume ellipsoid (12(+2) Points)
(a) Let Δ_{d} be the standard d-simplex given by

$$
\Delta_{d}:=\left\{x=\left(x_{1}, \ldots, x_{d+1}\right) \in \mathbb{R}^{d+1}: x_{i} \geq 0 \text { and } x_{1}+\ldots x_{d+1}=1\right\}
$$

View Δ_{d} as a d-dimensional convex body lying in the affine subspace given by the hyperplane $H:=\left\{x \in \mathbb{R}^{d}: x_{1}+\cdots+x_{d+1}=1\right\}$. Determine the ellipsoid E_{1} of maximal volume contained in Δ_{d}. If c is the center of E_{1}, show that the constant $\rho=d$ is minimal for the inclusion $\Delta_{d}-c \subseteq \rho\left(E_{1}-c\right)$ to hold. ${ }^{1}$
(b) Let C_{d} be the d-cube given by

$$
C_{d}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}:\left|x_{i}\right| \leq 1\right\}
$$

Determine the ellipsoid E_{2} of maximal volume contained in C_{d}.

[^0](c) Let C_{d}^{*} be the standard d-dimensional octahedron given by
$$
C_{d}^{*}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}:\left|x_{1}\right|+\cdots+\left|x_{d}\right| \leq 1\right\} .
$$

Determine the ellipsoid E_{3} of maximal volume contained in C_{d}^{*}. Prove that $\rho=\sqrt{d}$ is minimal for the inclusion $C_{d}^{*} \subseteq \rho E_{3}$ to hold.
(d) Bonus: Let C be a convex polytope such that its symmetry group G acts transitively on its set of vertices. Show that the center of the ellipsoid E of maximal volume contained in C coincides with the barycenter of the vertex set of $C .^{2}$ Does this imply that E is a ball?

[^1]
[^0]: ${ }^{1}$ Given a set $X \subset \mathbb{R}^{d}$, the expression $X-c$ denotes the set $\{x-c: x \in X\}$. Given a positive constant δ, the expression δX refers to the set $\{\delta x: x \in X\}$.

[^1]: ${ }^{2}$ The action of a group G on a set X is transitive if there is only one orbit, that is, if $G x=$ $\{g x: g \in G\}=X$ for $x \in X$. The barycenter of a set of points $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ is the point $\sum_{i} \frac{1}{n} x_{i}$.

