

Prof. Günter M. Ziegler Albert Haase, Miriam Schlöter Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Discrete Geometry II – Problem Sheet 6

Please hand in your solutions to Prof. Ziegler on **Tuesday**, **June 03**, **2014** before the lecture begins.

Problem 1: Convex bodies, polars, and ellipsoids (8(+2) Points) Given a set $A \subseteq \mathbb{R}^d$, the *polar* of A, denoted by A^* , is defined as

 $A^* := \{ y \in \mathbb{R}^d \colon \langle y, x \rangle \le 1 \text{ for all } x \in A \}.$

- Let K be a (full-dimensional) convex body containing the origin in its interior.
- (a) Show that K^* is a convex body containing the origin in its interior.
- (b) Show that $(K^*)^* = K$.
- (c) Let *E* be an ellipsoid centered at the origin given by $E = \{x \in \mathbb{R}^d : \langle Qx, x \rangle \leq 1\}$, where *Q* is a positive definite matrix. Show that $E^* = \{y \in \mathbb{R}^d : \langle Q^{-1}y, y \rangle \leq 1\}$.
- (d) *Bonus:* Show that the image of an ellipsoid under a surjective affine map is again an ellipsoid.

Problem 2: Löwner–John: maximal volume ellipsoid (12(+2) Points) (a) Let Δ_d be the standard d-simplex given by

$$\Delta_d := \{ x = (x_1, \dots, x_{d+1}) \in \mathbb{R}^{d+1} \colon x_i \ge 0 \text{ and } x_1 + \dots x_{d+1} = 1 \}.$$

View Δ_d as a *d*-dimensional convex body lying in the affine subspace given by the hyperplane $H := \{x \in \mathbb{R}^d : x_1 + \cdots + x_{d+1} = 1\}$. Determine the ellipsoid E_1 of maximal volume contained in Δ_d . If *c* is the center of E_1 , show that the constant $\rho = d$ is minimal for the inclusion $\Delta_d - c \subseteq \rho(E_1 - c)$ to hold.¹

(b) Let C_d be the *d*-cube given by

$$C_d := \{ (x_1, \dots, x_d) \in \mathbb{R}^d \colon |x_i| \le 1 \}.$$

Determine the ellipsoid E_2 of maximal volume contained in C_d .

¹Given a set $X \subset \mathbb{R}^d$, the expression X - c denotes the set $\{x - c : x \in X\}$. Given a positive constant δ , the expression δX refers to the set $\{\delta x : x \in X\}$.

(c) Let C_d^* be the standard *d*-dimensional octahedron given by

$$C_d^* := \{ (x_1, \dots, x_d) \in \mathbb{R}^d : |x_1| + \dots + |x_d| \le 1 \}.$$

Determine the ellipsoid E_3 of maximal volume contained in C_d^* . Prove that $\rho = \sqrt{d}$ is minimal for the inclusion $C_d^* \subseteq \rho E_3$ to hold.

(d) Bonus: Let C be a convex polytope such that its symmetry group G acts transitively on its set of vertices. Show that the center of the ellipsoid E of maximal volume contained in C coincides with the barycenter of the vertex set of C.² Does this imply that E is a ball?

²The action of a group G on a set X is *transitive* if there is only one orbit, that is, if $Gx = \{gx : g \in G\} = X$ for $x \in X$. The barycenter of a set of points $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ is the point $\sum_i \frac{1}{n} x_i$.