Prof. Günter M. Ziegler
Albert Haase, Miriam Schlöter

Discrete Geometry II - Problem Sheet 8

Please hand in your solutions to Prof. Ziegler on Tuesday, June 18, 2014 before the lecture begins.

Problem 1: Volume of the free sum

We will verify Proposition 2.61 part (3) from class in a special case. Let K and L both be simplicial convex polytopes of dimensions k respectively ℓ with the origin in their interiors. Prove that

$$
\operatorname{vol}_{k+\ell}(K \oplus L)=\binom{k+\ell}{k}^{-1} \operatorname{vol}_{k}(K) \operatorname{vol}_{\ell}(L)
$$

Problem 2: Volume of cross sections
Let $C_{3}=[0,1]^{3}$ be the 3 -dimensional unit cube. For $t \in \mathbb{R}$, define the hyperplane

$$
H_{t}:=\left\{x \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=t\right\} .
$$

Now define a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
f(t):=\operatorname{vol}_{2}\left(C_{3} \cap H_{t}\right) .
$$

Explicitly express the function f in terms of t and sketch the graphs of $t \longmapsto f(t)$ and of $t \longmapsto \sqrt{f(t)}$.

Problem 3: Signed volume

For a triangle $\Delta=\Delta(a, b, c)=\operatorname{conv}\{a, b, c\}$ with ordered vertices $a, b, c \in \mathbb{R}^{2}$ we define the signed volume of Δ as

$$
\operatorname{vol}_{2}^{\circ}(\Delta):=\frac{1}{2} \operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
a & b & c
\end{array}\right) .
$$

Let $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$ be a polygon with vertices $v_{i} \in \mathbb{R}^{2}$ ordered counterclockwise. Let $p \in \operatorname{int}(P)$ be a point in the interior of P.
(a) Show the following equality where $\operatorname{vol}_{2}(P)$ denotes the standard 2-dimensional volume of P :

$$
\begin{equation*}
\operatorname{vol}_{2}(P)=\sum_{i=1}^{n} \operatorname{vol}_{2}^{\circ}\left(\Delta\left(p, v_{i}, v_{i+1}\right)\right) \quad \text { where } v_{n+1}:=v_{1} . \tag{*}
\end{equation*}
$$

(b) Argue geometrically that the right-hand side of $(*)$ is independent of the choice of $p \in \mathbb{R}^{2}$ - whether $p \in P$ or not.
(This shows that the volume is a polynomial of the vertex coordinates and invariant under translation).

