Discrete Geometry II - Problem Sheet 10

Please hand in your solutions to Prof. Ziegler on Tuesday, July 1, 2014 before the lecture begins.

Problem 1: Facet Volume and Polytope Volume

In the lecture we proved the equality

$$
v(b):=\operatorname{vol}_{d}\left(P_{A}(b)\right)=\frac{1}{d} \sum_{i=1}^{n} \operatorname{vol}_{d-1}\left(F_{i}\left(P_{A}(b)\right)\right) \cdot b_{i} .
$$

Here $A \in \mathbb{R}^{n \times d}$ for $n>d$ is a matrix with full rank and pairwise distinct row vectors that all have length one. The polytope

$$
P_{A}(b)=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}
$$

for $b \in \mathbb{R}^{n}$, has facets $F_{i}\left(P_{A}(b)\right)$ with normal vector equal to the i-th column of A. The set of b-vectors for which $P_{A}(b)$ is non-empty is

$$
\mathcal{B}_{A}:=\left\{b \in \mathbb{R}^{n}: P_{A}(b) \neq \emptyset\right\} ;
$$

the set of b-vectors that yield polytopes of volume at least 1 is

$$
\mathcal{M}_{A}:=\left\{b \in B_{A}: \operatorname{vol}\left(P_{A}(b)\right) \geq 1\right\}
$$

As an example, define the matrix

$$
A:=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & -\sqrt{2}
\end{array}\right)
$$

Choose a coordinate system ($=$ basis) for $\mathbb{R}^{5} / \operatorname{im}(A) \cong \mathbb{R}^{2}$.
(a) Sketch $\overline{\mathcal{B}_{A}}:=\mathcal{B}_{A} / \operatorname{im}(A)$ and $\overline{\mathcal{M}_{A}}:=\mathcal{M}_{A} / \operatorname{im}(A)$.
(b) Explicitly determine $\bar{v}: b \stackrel{\bar{v}}{\longmapsto} v(b)$ as a piecewise polynomial function $\overline{\mathcal{B}_{A}} \rightarrow \mathbb{R}$.
(c) Plot the function \bar{v}.
(d) Is \bar{v} differentiable on the interior of its domain \mathcal{B}_{A} ? Twice differentiable?

Problem 2: Volume of Minkowski Sum of Polytope and Scaled Ball (6 Points)
Let $P \subset \mathbb{R}^{d}$ be a d-dimensional polytope and let $B_{d} \subset \mathbb{R}^{d}$ be the unit ball. Define the function

$$
f_{P}(t):=\operatorname{vol}_{d}\left(P+t B_{d}\right)
$$

(a) For $d=2$ show that $f_{P}(t)$ is a polynomial of degree 2 and give an interpretation of its coefficients.
(b) Let $d=2$. Show that the Brunn-Minkowski inequality for P and B_{2} is equivalent to the "isoperimetric inequality" $p^{2} \geq 4 \pi a$, where p is the perimeter and a is the area of P.
(c) Let $d=3$. Show that $f_{P}(t)$ is a polynomial of degree 3 and interpret its coefficients.

Problem 3: Orthant-Shaped Polyhedra

Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}_{>0}^{d}$ have strictly positive coordinates and let $b \in \mathbb{R}_{\geq 0}^{n}$ have non-negative coordinates. Define the orthant-shaped polyhedron

$$
Q(b):=\left\{x \in \mathbb{R}^{d}: x \geq 0, a_{i}^{t} x \geq b_{i} \text { for all } i=1, \ldots, n\right\}
$$

For $\alpha \in \mathbb{R}_{>0}^{n}$, define

$$
M:=\left\{b \in \mathbb{R}_{\geq 0}^{n}: \operatorname{vol}_{d-1} F_{i}(Q(b)) \leq \alpha_{i} \text { for all } i=1, \ldots, n\right\},
$$

where $F_{i}(Q(b))$ denotes the facet of $Q(b)$ with normal vector a_{i}.
(a) Show that for $i=1, \ldots, n$ and $\varepsilon>0$

$$
\operatorname{vol}_{d-1}\left(F_{i}(Q(b))\right) \leq \operatorname{vol}_{d-1}\left(F_{i}\left(Q\left(b+\varepsilon e_{i}\right)\right)\right),
$$

where e_{i} denotes the i-th unit vector in \mathbb{R}^{n}.
(b) Show that there is a constant $c>0$ such that $b_{i} \leq c$ for all $b \in M$.
(c) Deduce from (b) that there is a constant $u>0$ such that

$$
P(b):=Q(b) \cap\left\{x \in \mathbb{R}^{d}: x_{1}+x_{2}+\cdots+x_{d} \leq u\right\}
$$

is a polytope such that $F_{i}(P(b))=F_{i}(Q(b))$.
(d) Bonus: Show that M is convex.

