Discrete Geometry II - Problem Sheet 12

Please hand in your solutions to Prof. Ziegler on Tuesday, July 15, 2014 before the lecture begins. This the last sheet. It has 6 bonus points.

Problem 1: Mixed Volume of two Ellipses

Let K and L be two ellipses in \mathbb{R}^{2}, say,

$$
\begin{aligned}
K & :=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}, \\
L & :=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}} \leq 1\right\} .
\end{aligned}
$$

(a) Is the Minkowski sum $K+L$ an ellipse?
(b) Determine the function

$$
f\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{vol}_{2}\left(\lambda_{1} K+\lambda_{2} L\right)
$$

How many values of f do you need in order to determine f ?
(c) Bonus: Compute the mixed volume

$$
\operatorname{MV}(K, L) .
$$

Problem 2: Mixed Volumes and a One-Dimensional Projection hyperplane perpendicular to u.
(a) Show that for a convex body $K \subset \mathbb{R}^{d}$

$$
\operatorname{MV}(K[d-1],[0, u])=\frac{\|u\|}{d} \operatorname{vol}_{d-1}\left(\pi_{u}(K)\right)
$$

Here $\pi_{u}: \mathbb{R}^{d} \rightarrow u^{\perp}$ is the orthogonal projection onto u^{\perp}.
(b) Show that the function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by

$$
f(u):=\operatorname{MV}(K[d-1],[0, u])
$$

is convex. [Hint: First observe that f is positively linear and then show that $f(u+v) \leq f(u)+f(v)$.]

Problem 3: Volume of a Zonotope
For vectors $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{R}^{d} \backslash\{0\}$ and using the notation of Problem 2 above define the zonotope

$$
Z:=\left[0, z_{1}\right]+\left[0, z_{2}\right]+\cdots+\left[0, z_{n}\right] .
$$

(a) Show that

$$
\operatorname{vol}_{d}(Z)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n}\left|\operatorname{det}\left(z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{d}}\right)\right| .
$$

(b) For π_{u} as in Problem 2, consider the function

$$
f(u):=\operatorname{vol}_{d-1}\left(\pi_{u}(Z)\right)
$$

Show that there is a zonotope $\Pi_{Z}=\sum_{j=1}^{M}\left[-w_{j}, w_{j}\right]$ such that

$$
f(u)=\max \left\{u^{t} x: x \in \Pi_{Z}\right\} \quad \text { for all } u \in \mathbb{S}^{d-1}
$$

