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This is the second in a series of three courses on Discrete Geometry. We will get to know fascinating
geometric structures such as configurations of points and lines, hyperplane arrangements, and in partic-
ular polytopes and polyhedra, and learn how to handle them using modern methods for computation and
visualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at
first sight (and some of it is), but it also very quickly touches topics of current research.

For students with an interest in discrete mathematics and geometry, this is the starting point to specialize
in discrete geometry. The topics addressed in the course supplement and deepen the understanding of
discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology,
and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some
knowledge of combinatorics and geometry is helpful.
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Discrete Geometry II — FU Berlin Summer Term 2014 — Lecture Notes, Version: July 25, 2014 — Günter M. Ziegler

0 Introduction

What’s the goal?

This is a second course in a large and interesting mathematical domain commonly known as
“Discrete Geometry”. This spans from very classical topics (such as regular polyhedra – see
Euclid’s Elements) to very current research topics (Discrete Geometry, Extremal Geometry,
Computational Geometry, Convex Geometry) that are also of great industrial importance (for
Computer Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in
such a way that

• you get an overview of the field of Discrete Geometry and its manifold connections,

• you learn to understand, analyze, visualize, and confidently/competently argue about the
basic structures of Discrete Geometry, which includes

– point configurations/hyperplane arrangements,
– frameworks
– subspace arrangements, and
– polytopes and polyhedra,

• you learn to know (and appreciate) the most important results in Discrete Geometry,
which includes both simple & basic as well as striking key results,

• you get to learn and practice important ideas and techniques from Discrete Geometry
(many of which are interesting also for other domains of Mathematics), and

• You learn about current research topics and problems treated in Discrete Geometry.

In this second course of the sequence, we will in particular treat the relationship between

• “discrete objects” (such as polytopes and polyhedra, but also lattices and lattice points)
and

• “general objects” (such as convex bodies)

in terms of various notions of diameter, volume, and roundness.
This will not only be interesting per se, but also lead us to some major theorems and insight
(e.g. on such fundamental notions as volume), but also to major applications (e.g. on sphere
packings, which is in turn important for coding theory).
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Discrete Geometry II — FU Berlin Summer Term 2014 — Lecture Notes, Version: July 25, 2014 — Günter M. Ziegler

1 Linear programming and some applications

1.1 On the diameter of polyhedra

Let’s consider a polyhedron of dimension d with n facets; let’s call it an (d, n)-polyhedron.
Careful: Want to look at pointed polyhedron, n ≥ d, which has a vertex, so the lineality space
is trivial.
The Hirsch conjecture from 1957 is the false (!) statement that the edge-graph of any (d, n)-
polyhedron has diameter at most n − d. This was disproved for unbounded polyhedra by Klee
& Walkup [3] in 1967 and in general by Santos [5] in 2012. The polynomial Hirsch conjecture
remains open: It might still be that the maximal diameter, ∆(d, n), satisfies ∆(d, n) ≤ d(n−d)
for all n ≥ d ≥ 1.
We will, nevertheless, see why from a “linear programming point of view” the bound n − d
looks natural, and even more so, why this is a relevant parameter.

Exercise 1.1. Show that ∆(2, n) ≤ n − 2 and ∆(3, n) ≤ n − 3, and that both inequalities are
sharp (that is, hold with equality for n ≥ 2 resp. n ≥ 3).

Up to recently, the best upper bound for the diameters of polyhedra was provided by Kalai &
Kleitman in a striking two page paper [2] in 1992:

∆(d, n) ≤ nlog(d)+2,

which was improved only slightly by Kalai [1] to

∆(d, n) ≤ nlog(d)+1,

where throughout “log” denotes the binary logarithm (i.e., base 2). However, just a few weeks
ago Mike Todd (Cornell University) in a 4-page paper [6] sharpened the Kalai–Kleitman anal-
ysis to obtain

∆(d, n) ≤ (n− d)log(d) = dlog(n−d),

which indeed is sharp for d = 1 and d = 2.
In class, we will go through the arguments of Todd [6] (and thus, in particular, the idea of Kalai
& Kleitman [2]).

End of class on April 15

1.2 Geometry of linear programming and pivot rules

1.2.1 Linear programming (Discrete Geometry version)

Any system Ax ≤ b with A ∈ Rn×d, b ∈ Rn defines a polyhedron P ⊆ Rd with dimP ≤ d and
#facets ≤ n.
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Without loss of generality we may assume that rankA = d, that is the system Ax ≤ b has a
subsystem that defines an orthant, so in particular P is either pointed (has a vertex), or is empty.
Without loss of generality (theoretically, this may be harder to compute) we may assume that
dimP = d, so the polyhedron is full-dimensional. Moreover, we want to get our system into
the form

Ax ≤ b, −x ≤ 0

with b > 0 componentwise. For this we have to solve a “Phase I” problem that finds a vertex
x0 of the polyhedron, and then do a coordinate transformation that moves the vertex x0 to 0 and
transforms a system of inequalities that are tight at x0 to the positive orthant system x ≥ 0.
With a linear objective function we have a system of the form

max ctx

Ax ≤ b

x.

Example:

max y

x− y ≤ 2

−x+ y ≤ 1

x+ 2y ≤ 7

−x ≤ 0

y ≤ 0.

Geometric description of the polyhedron
• P is a full-dimensional polyhedron, with ≤ n facets, given inH-description-
• We have a linear objective function, which might be assumed to be the last coordinate xd,

to be maximized (or in other situations: minimized).
• We assume that the polyhedron is simple, the system is in general position (this may be

achieved by perturbing the right-hand sides: Exercise!).
• Any d × d full rank subsystem A′x ≤ b′ defines a generalized orthant, which up to an

affine transformation is equivalent to the standard positive orthant “x ≥ 0.”
• Any generalized orthant defines a point (the unique solution of A′x = b′) and d rays (by

fixing all the d inequalities by one, and letting the slack in the last one get large).
• A generalized orthant is feasible if the point it defines by A′x = b′ is feasible (defines

all inequalities, not only those in the subsystem). Note that this does not depend on the
objective function.
• A generalized orthant is dual feasible if sliding along any of its rays does not improve the

objective function. Note that this does not depend on the right-hand side vector b.
• A generalized orthant is optimal if it is both feasible and dual feasible.
• Any optimal generalized orthant defines an optimal solution of the linear program.

. . . and what the primal simplex algorithm does on it:
• We assume that after preprocessing (known as “Phase I”) we have −x ≤ 0 as a feasible

generalized orthant, and in particular x0 = 0 as a feasible starting vertex.
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• If the generalized orthant is dual feasible, DONE with optimal solution.
• Select an improving ray, and slide along the ray. (Along the ray one inequality of the

orthant is not tight any more; the objective function improves along the ray.)
• If the objective function improves without bound along the ray, DONE with optimal so-

lution.
• Otherwise along the way we hit a bound, that is, a new facet, whose inequality completes

a new feasible generalized orthant. REPEAT.
The process stops in finite time, since in every step we improve the objective function (no
cycles) and there are only finitely many orthants — not more than

(
n
d

)
. (A better bound is

obtained from the upper bound theorem — need a version for unbounded polyhedra: Exercise!)
End of class on April 17

Alternatively, here is what the dual simplex algorithm does on a linear program:
• We assume that after preprocessing (known as “Phase I”) we have found a dual feasible

generalized orthant, which in particular defines a current solution (vertex of the system,
but not necessarily of the polyhedron).
• If the generalized orthant is feasible, DONE with optimal solution.
• Select an inequality violated by the current solution.
• If the violating inequality hits none of the rays of the current generalized orthant, then

DONE with proof that the system is infasible.
• Otherwise construct a new dual feasible generalized orthant whose current solution gives

a better upper bound on the maximum of the system. REPEAT.
The process stops in finite time, if we take care that in every step we improve the current upper
bound on the objective function values on the polyhedron (no cycles) and there are only finitely
many generalized orthants.

End of class on April 22

1.2.2 Linear programming (Numerical Linear Algebra version)

We write down two linear programs, in the following form.
The primal linear program is

(P ) max ctx

Ax ≤ b

x ≥ 0.

The associated dual linear program is

(D) min bty

Aty ≥ c

y ≥ 0.

Lemma 1.2 (Weak Duality Theorem). If for a primal-dual pair of linear programs x0 is a
feasible solution for the primal (P ) and y0 is a feasible solution for the dual (D), then

ctx0 ≤ bty0.

In particular, the maximum of (P ) is smaller or equals to the minimum of (D).
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Proof. We compute
ctx0 ≤ (Aty0)

tx0 = yt0(Ax0) ≤ yt0b = bty0.

The linear programs are then, by introduction of slack variables, converted into systems of
linear equations, to be solved in non-negative variables.
Thus the primal linear program becomes

(P ) max ctx+ 0tx̂ = γ

Ax+ Inx̂ = b

x ≥ 0, x̂ ≥ 0

This system has an “obvious” current solution, given by x ≡ 0 (the “non-basic variables” are
set to 0: these correspond to the inequalities that define the current generalized orthant), x̂ = b
(the “basic variables” are uniquely determined). This starting solution has the value γ = 0.
These systems are manipulated by row operations, which do not change the solution space.
Thus after a number of steps we still have the system in the form

(P ) max c̄txN + 0txB = γ̄

ĀNxN + InxB = b̄

xN ≥ 0, xB ≥ 0

Here the columns have been resorted, to keep the “basic variables” and the “non-basic variables”
together, that is, the index setsB andN together give the set of all columns labelled byB∪N =
{1, 2, . . . , d+n}. The coefficients in the system are ĀN = A−1B AN , and b̄ = A−1B b. The objective
function has been rewritten in terms of the non-basic variables. Its coefficients

c̄tN = ctN − ctBA−1B AN

are known as the reduced costs: in the geometric interpretation they give the slopes of the rays
of the current generalized orthant.
The current solution is given by xN ≡ 0, which uniquely determines the non-basic variables to
be xB = b̄ = A−1B b.
Thus the (current solution of the) system is feasible if b̄ ≥ 0, and it is dual feasible if c̄N ≤ 0.
A similar treatment/computation can be done for the dual system (D).

Lemma 1.3. For any pair of primal linear program (P ) and its dual program (D) in the equa-
tion form given above,
• the bases B for the system (P ) are in bijection with the non-bases N of the system (D);
• the feasible bases for (P ) are in bijection with the dual-feasible non-bases for (D);
• etc.

Proof. This rests on the observation that in the (n+ d)× (n+ d) matrix(
A In
−Id At

)
the row space spanned by the first n rows is the orthogonal complement of the space spanned
by the last d rows.
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Theorem 1.4 (Duality Theorem for Linear Programming). If a primal linear program (P ) and
its dual (D) are both feasible, then they have optimal solutions x∗ and y∗, and these have the
same optimal value.
If one of the programs is not feasible, then the other one is either infeasible as well, or it is
unbounded.

Proof. The optimal solutions exist, since the Simplex Algorithm will find it!

From the geometry of an optimal basis/optimal generalized orthant, we also get complementary
slackness: If in the optimal solution an inequality is not tight, then the corresponding variable in
the dual program is zero; if a variable is positive, then the corresponding dual inequality has to
be tight. This can also be seen from analysis of the inequalities in the proof of the Weak Duality
Theorem.
The optimal solution to a linear program can be computed efficiently:

In Practice there are commercial, as well as non-commercial, software libraries for linear pro-
gramming, which include implementations of the Primal Simplex Algorithm, the Dual
Simplex Algorithm, as well as other methods (such as Interior Point Methods) which will
solve to optimality practically every linear program that appears in practice.

In Theory there are two different computational models:

In the bit model the “Ellipsoid Method” (which will appear later in this course) is a
polynomial time method for solving linear programs, whose running time is poly-
nomial in the bit-size of the input. This method is theoretically very important, but
has not been implemented in practice.

In the unit cost model the Simplex Algorithm with a suitable choice of variable selec-
tions (“pivot rule”) may be polynomial — but this has not been proven. Indeed,
we do not even know whether in general there is any short (i.e. polynomially many
edges) path from a given starting vertex of the program to the optimal vertex. The
best upper bound is the nlog2 d upper bound discussed at the beginning of this course
— and this bound is not a polynomial in n and d. An upper bound of the type
d(n− d) might exist, but has not been proven.
Thus the complexity of Linear Programming, and in particular of the Simplex Algo-
rithm, is a major open problem both for Optimization, and for Discrete Geometry!

End of class on April 24

1.3 Further Notes on Linear Programming

Let’s step away from the simplex algorithm, and let’s look at the problem itsself — and let’s
assume we have a solution method (algorithm, perhaps software) that solves the problem, but
which we can treat as a “black box.” This is the oracle view, which has become popular in
optimization, with grave consequences for (computational) discrete and convex geometry: well-
defined input, well-defined output; estimate complexity
Examples:
LP-OPTIMIZATION problem/oracle:
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INPUT: d ≥ 1, n ≥ 1, A ∈ Qn×d, b ∈ Qn, c ∈ Qd

TASK: max ctx : Ax ≤ b, x ≥ 0

OUTPUT: optimal solution x∗ ∈ Qd, with certificate (basis)
or information that problem is infeasible, with certificate (basis & inequality),
or information that problem is unbounded, with certificate (basis & ray).

LP-FEASIBILITY problem/algorithms/oracle:

INPUT: d ≥ 1, n ≥ 1, A ∈ Qn×d, b ∈ Qn

TASK: find x : Ax ≤ b, x ≥ 0

OUTPUT: feasible solution x∗ ∈ Qd, with certificate (basis)
or information that problem is infeasible, with certificate (basis & inequality).

Note: Any algorithm for solving LP-OPTIMIZATION can be used to solve LP-FEASIBILITY.
We will see that the other direction “works as well.”
Note: Two algorithms we know/could work out for LP-OPTIMIZATION: Fourier–Motzkin
elimination (see Discrete Geometry I), and the Simplex Algorithm.

1.3.1 Complexity issues

Could it be that the solution exists, but it is too large (or too small) to write down in reasonable
time?
Real input/solutions don’t make sense, or need work to make sense of.
Recommended reading: Lovász’ lecture notes [4].
Could get answer from Fourier–Motzkin elimination.
Here: get answer from simplex and Cramer’s rule and Hadamard inequality.

Lemma 1.5 (Hadamard inequality). LetA ∈ Rn×n be a matrix with columnsA = (A1, . . . , An).
Then

| detA| ≤ |A1| · · · |An|.

Lemma 1.6 (The Cramer’s rule estimate). Let A ∈ Zn×n, b ∈ Zn, detA 6= 0 (integer data!).
Then the (rational!) solution for the system of equations Ax = b satisfies

|xi| ≤ |A1| · · · |An|·|b|.

Proof. Cramer’s rule, together with the observation that the denominator, detA, is an integer,
so its absolute value is at least 1. The same is true for the length of each column |Ai|.

1.3.2 Feasibility

First, we should discuss the problem how to find a feasible generalized orthant for Ax ≤ b,
x ≥ 0, in order to even start the simplex algorithm. Here are two solutions to that problem:
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• Use the complexity estimates to get explicit upper bounds for the variables, and thus have
a starting basis for the dual simplex algorithm (that is, a feasible basis for the simplex
algorithm applied to the dual program).

• Phase I: Write down an artificial OPTIMIZATION program, which is feasible, and whose
optimal solution (basis) will give a feasible solution (and a feasible basis!) for the FEA-
SIBILITY problem: For example

minx0 : Ax− x01 ≤ b, x ≥ 0, x0 ≥ 0.

It is trivial that if we can solve LP-OPTIMIZATION then we can solve LP-FEASIBILITY,
in a way that is completely independent of the the specific algorithm used to “implement”
LP-OPTIMIZATION; that is, we can use any LP-OPTIMIZATION oracle to “simulate” an
LP-FEASIBILITY algorithm; in other words, we can program a (fast) algorithm for
LP-FEASIBILITY if we can use a (fast) subroutine for LP-OPTIMIZATION (e.g. by putting
objective function zero).
However, note that the converse is also true: If we know how to solve LP-FEASIBILITY, then
we can also solve LP-OPTIMIZATION, that is,
LP-FEASIBILITY =⇒ LP-OPTIMIZATION.
For this, note that any feasible solution (x, y) for the primal-dual program

ctx ≥ bty

(PD) Ax ≤ b Aty ≥ c

x ≥ 0 y ≥ 0

1.3.3 Modelling issues

Conversion of programs from equality form to inequality form, and conversely. See the Exer-
cises.

1.3.4 Perturbation techniques

If we replace the right-hand sides bi by bi + εi, for a suitably small ε, then
• the perturbed problem will be feasible if and only if the original problem is feasible,
• the perturbed problem will be primally non-degenerate, that is, it describes a simple poly-

hedron, and at any generalized orthant (basis), no extra inequalities are tight (that is, the
non-basic variables are non-zero).

(see Exercise).
Moreover,
• similarly, by perturbing the objective function the program can be made dually non-

degenerate, so that in particular the optimal solution is unique (if it exists), and
• the suitable ε > 0 can be estimated explicitly.
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1.3.5 Integral solutions? An example

In general, the optimal solutions will not be integral, although many applications ask for integral
solutions. Even if we find the best integral solution, this will come without a certificate, as there
may be not dual constraints that are tight at the best integer solution.
However, in many combinatorial situations, we are lucky. Here is one example.

Example 1.7 (Network flows). If the bounds on each arc are integral, then the optimal solution
will be integral.
(This may be seen from an algorithm by successive improvement, or from a matrix argument,
see exercise.)
Interpretation of dual solutions: Max cut!
Max-Flow-Min-Cut theorem!

Exercise 1.8. Let A ∈ {0, 1,−1}n×n be a 0/± 1 matrix. Show that
(i) The determinant of a 0/1-matrix A can be large, even if there are only two 1s per row.

(ii) The determinant of A is not large if there is at most one 1 and at most one −1 per row.
(iii) Use the Hadamard inequality to give an upper bound on | detA|
(iv) For A ∈ {0, 1}n×n give a much better upper bound, by

— Multiplying the matrix by 2,
— Adding a column of 0’s and then a row of 1’s,
— subtracting the first row from all others
and then applying Hadamard to the resulting ±1-matrix.

(v) Give examples where this bound is tight.

End of class on April 29
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2 Convex Bodies, Volumes, and Roundness

“Although convexity is a simple property to formulate, convex bodies possess a
surprisingly rich structure” (Keith Ball [1])

Archimedes book “On the sphere and the cylinder”

2.1 Some basic definitions and examples

Definition 2.1 (Linear/affine/conical/convex hulls). Define in Rn:
• Linear subspace, linear hull
• Affine subspace (possibly empty), affine hull
• Conical subspace (= convex cone, or simply cone), conical hull
• Convex hull, convex set

Definition 2.2 (Convex set, line-free, bounded, convex body). Define in Rn: A convex set is
• line free: does not contain an affine line
• bounded: does not contain a ray
• convex body: a closed, bounded (that is, compact) full-dimensional convex set
• strictly convex: if λx+ (1− λ)y ∈ intC for 0 < λ < 1 and x 6= y.

Examples:
• linear and affine subspaces
• convex polygons in the plane
• regular polyhedra in 3-space

Example 2.3. The unit ball of Rd with `2 norm is a centrally-symmetric proper convex body.
Indeed, convexity follows from the triangle inequality

Thus the “theory of finite-dimensional Banach spaces” is equivalent to the “theory of centrally-
symmetric convex bodies.”
For example, Dvoretzky’s theorem, which says that every centrally symmetric convex body in
Rn has a central section of dimension roughly log n that is linearly approximately equivalent
to some Rd with the Euclidean norm, is a theorem about centrally symmetric convex bodies,
which have sections that are roughly ellipsoids. (Indeed, concentration of measure implies that
a random subspace will do . . . )

End of class on May 6

Example 2.4. The set PSDn of positive semi-definite (n× n)-matrices is a closed convex cone
in Rn×n of dimension

(
n+1
2

)
.

Example 2.5. If identify the N -dimensional vector space R[x1, . . . , xd]≤2k of real polynomials
in d variables of degree less than 2k with RN . Then the set

Pd,2k = {p : p ∈ R[x1, . . . , xd]≤2k and p(x) ≥ 0 for all x ∈ Rd}

of positive polynomials is a closed convex cone in RN . Similarly the set

Σd,2k = {p : ∃h1, . . . , hn ∈ R[x1, . . . , xd]≤k such that p(x) = h21(x) + . . . h2n(x)}

of sums of squares (SOS) is a closed convex cone in RN .
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Exercise: The dimension of the vector space R[x1, . . . , xd]≤2k is
(
2k+d
d

)
.

Theorem 2.6 (Gauß–Lucas Theorem). Let p ∈ C[z] be a complex polynomial in one variable
with roots r1, . . . , rd, then the roots of the derivative p′ of p are contained in the convex hull
conv{r1, . . . , rd}.

Proof. If r1 is a zero of p as well as of p′, then r1 = 1r1+0r2+· · ·+0rd is a convex combination.
Assume z is a zero of p′ but not of p. Write p and p′ in terms of their roots (they factor over C)
and look at p(z)

p′(z)
to get a convex combination of the ri.

If p has only real roots, then the above result is a consequence of the Rolle’s theorem (or the
mean value theorem).

2.2 Topological properties

Theorem 2.7 (Carathéodory). Let A ⊆ Rd be a set and x ∈ conv(A) a point in the convex hull
of A. Then there are d+ 1 points p1, . . . , pd+1 in A such that x ∈ conv{p1, . . . , pd+1}.

Proof. Write x ∈ conv(A) as convex combination of a minimal number of points p1, . . . , pn ∈
A. If n is more than d + 1, then there is an affine dependency, where one of the coefficients
is positive. Subtract a multiple of this dependency to kill one of the coefficients of the convex
combination.

Corollary 2.8. If A ⊂ Rd is compact, then so is conv(A).

Proof. Let ∆d = conv{e1, . . . , ed+1} be the standard d-simplex in Rd+1. Consider a map from
Ad+1 × ∆d → A given by (p1, . . . , pd+1, λ) 7→

∑
λipi. Clearly its image is contained in

conv(A). The converse is true by Carathéodory’s theorem. Hence conv(A) is the image of a
compact set under a continuous map.

End of class on May 8

Definition 2.9 (interior points, interior, boundary points, boundary).

Definition 2.10 (relative interior, relative boundary).

Proposition 2.11. If K is convex, then relintK is also convex.

Lemma 2.12. If x0, . . . , xk are affinely independent, P := conv{x0, . . . , xk}, then x ∈ relintP
if and only if x = λ0x0 + · · ·+ λkxk with all λi > 0.

Corollary 2.13. K convex, not empty, then relintK 6= ∅.
Definition 2.14 (dimension of a convex set).

Theorem 2.15 (Carathéodory’s Theorem — ambient space free version).

Corollary 2.16. Characterization of relative interior of a polytope P := conv{x0, . . . , xn}:
x = λ0x0 + · · ·+ λkxk with all λi > 0.

Definition 2.17 (extreme points).

Theorem 2.18 (Minkowski). K closed and bounded convex set, then K = conv(extK).

End of class on May 13
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2.3 Support and separation

Definition 2.19 (Nearest point map). Let A ⊂ Rd be a non-empty closed convex set. Then the
nearest-point map of A is the map πA : Rd → A which assigns to each x ∈ Rd the point on A
with the smallest (Euclidean) distance from x.

Proposition 2.20. The map πA of “Definition” 2.19 exists (that is, the nearest point exists, lies
in A, and is unique) and the map is contractive:

‖πA(x)− πA(y)‖ ≤ ‖x− y‖

and thus in particular continuous.

Exercise 2.21. There is a converse: If for a closed set A the nearest point πA(x) is unique for
all x, then A is convex.

Notation: H hyperplane, H+, H− half spaces: They are closed convex sets, their interiors are
inter(H+) = Rd \H− and inter(H−) = Rd \H+, their boundary is ∂H+ = ∂H− = H .

Definition 2.22 (separates). If A ⊆ Rd is a convex set and p ∈ Rn, then a hyperplane H
separates p from A if p ∈ H+ and A ⊆ inter(H−), that is, A ∩ H+ = ∅. The hyperplane H
strictly separates A and p if A ⊆ inter(H−) and p ∈ inter(H+).
If A,B ⊆ Rd are convex sets, then a hyperplane H separates B from A if B ⊂ H+ and
A ⊆ inter(H−). The hyperplane H strictly separates A and B if A ⊆ inter(H−) and B ⊆
inter(H+).

Note that if separation implies that the sets are disjoint, and strict separation implies weak
separation. However, separation is not symmetric: There may be a hyperplane that separates B
from A, but none that separates A from B.

Theorem 2.23 (Separation Theorem). LetA ⊆ Rd be a non-empty closed convex set and p /∈ A,
then there is a hyperplane that strictly separates p and A.

Proof. Set q := πA(p), c := p− q,

H := {x ∈ Rd : ctx = ctq}

and
H1/2 := {x ∈ Rd : ctx = ct p+q

2
}.

An elementary geometric argument shows that A ⊂ H−, while p /∈ H−, such that H separates
p from A with q ∈ H , and H1/2 strictly separates p and A.

Definition 2.24 (supporting hyperplane). A supporting hyperplane H for a convex set A satis-
fies A ⊆ H− and A ∩H 6= ∅.

. . . so this exists by the (proof of the) Separation Theorem.

Corollary 2.25. closed convex set is intersection of half spaces given by supporting hyperplanes
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Corollary 2.26. IfA is a convex body, then for each direction c 6= 0 there is a unique supporting
hyperplane H = {x : ctx = δ}.

Definition 2.27 (support function). Convex body A, define hA : Rd → R by hA(c) :=
max{ctx : x ∈ A}.

Corollary 2.28. Convex body is determined by its support function.

Definition 2.29 (Minkowski sum). The Minkowski sum of two sets A,B ⊆ Rd is

A+B := {x+ y : x ∈ A, y ∈ B}.

Lemma 2.30. If A and B are convex, then so is A+B = B + A.

Lemma 2.31. K,L,M convex bodies. Then
(i) hK+L = hK + hL.

(ii) K +M = L+M implies K = L.

Remark 2.32. We have just established that the set of convex bodies Kd is a cancellative com-
mutative monoid (without neutral element).

End of class on May 15

Theorem 2.33 (Supporting Hyperplane Theorem). Let A ⊂ Rd be a closed and convex set.
Then for every point p in the (relative) boundary ∂A of A there is a supporting hyperplane
HA(p) for A at p, that is, A ⊆ H−A (p) and p ∈ H ∩ A.

Proof. If A is not full-dimensional, replace the ambient space by an affine subspace of dimen-
sion dim(A). A supporting hyperlane in this subspace lies inside some (actually many) hyper-
planes in Rd, all of which are supporting. So assume A is full-dimensional. Via the nearest
point map πA we get a supporting hyperplane for A at each point π(y) for y ∈ Rd \A with unit
normal vector y−πA(y)

‖y−πA(y)‖2 . Take a series (yn) ⊂ Rd \ A that converges to p. The corresponding

sequence of unit normal vectors un := yn−πA(yn)
‖yn−πA(yn)‖2 for the supporting hyperplanes at πA(yn)

has, by compactness of the unit sphere, a subsequence converging to u ∈ Sd−1. There is a cor-
responding subsequence of (yn) that also converges to p. Using convergence of the sequences
and continuity of the inner product argue that HA(p) := {x ∈ Rd : utx = utp} is a supporting
for A at p.

Proof of Minkowski’s Theorem 2.18. The inclusion K ⊇ conv(extK) is trivial. For the other
inclusion argue by induction on d = dim(C). The cases d = 0, 1 are trivial. Assume the theo-
rem holds for all compact and convex sets of dimension less than d. Assume K has dimension
d. Let p ∈ ∂K. Then, by Theorem 2.33 above, there is a supporting hyperplane HK(p) for
K at p. The “face” F := K ∩ HK(p) is of lower dimension and hence p ∈ conv(extF ). By
the homework assignment extF ⊆ extK and hence p ∈ conv(extK). If p ∈ relint(K) take
a line through p that intersects ∂A in two points. Argue using faces that these points are in
conv(extK), so p must be in conv(K) as well.
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2.4 Spectrahedra

Definition 2.34. A spectrahedron S is the intersection of the cone PSDn of symmetric positive-
semidefinite matrices with a d-dimensional affine subspace V (of the space of symmetric n× n
matrices). If A is positive semi-definite we write A � 0.

Proposition 2.35. A spectrahedron S is convex and closed. It can be written as

S = {(x1, . . . , xd) ∈ Rd : A0 + x1A1 + . . . xdAd � 0},

for suitable symmetric matrices A0, . . . , Ad of size n × n. Let A(x) := A0 + x1A1 + . . . xdAd
denote the (symmetric) matrix valued function from Rd → Rn×n.

Example 2.36. The cylinder

C := {(x, y, z) ∈ R3 : x2 + y2 ≤ 1,−1 ≤ z ≤ 1}

is a spectrahedron. Consider the points (x, y, z) ∈ R3 such that the sum

A0 + xA1 + yA2 + zA3 =


1 + x y 0 0
y 1− x 0 0
0 0 1 + z 0
0 0 0 1− z

 � 0.

Here A0 is the identity matrix. A1 has a 1 in position (1, 1) and a −1 at (2, 2) and other-
wise zeros. A2 is zero except for 1s at (1, 2) and (2, 1). Finally, A3 is zero except for a 1 at
(3, 3) and a −1 at (4, 4). It turns out that C is the set of all points w = (x, y, z) that satisfy
A(w) � 0. The cylinder C can also be viewed as the intersection of PSD4 with the affine
subspace A0 + span{A1, A2, A3}.

Proposition 2.37. Any polyhedron P is a spectrahedron.

Proof commented, since it is a current exercise.

Example 2.38. Any univariate sum of squares (SOS) polynomial p ∈ R[t] of degree 2n that can
be written as

p = (1, t, t2, . . . , tn)t

1 0 a
0 1− 2a 0
a 0 1

 (1, t, t2, . . . , tn)

defines a spectrahedron S, where S is given by all a such that the matrix is positive semi-
definite. Actually S = [−1, 1/2]. This extends to polynomials of higher degree that can be
written as ttA t for positive semi-definite A.
Example 2.39 (Non-example). Consider the (linear) projection of the cylinder C into the plane
given by x + 2z = 0. What we get is the convex hull C ′ of two non-intersecting ellipses in the
plane. Recalling that a matrix is positive semidefinite if the determinants of all of its diagonal
minors are non-negative, we can conclude that any spectrahedron must be a so-called basic
semialgebraic set, that is, a set of points satisfying finitely many polynomial inequalities where
the polynomials are of finite degree. Using the fact that infinitely many points determine a
polynomial of finite degree one can argue that C ′ is not basic semialgebraic, hence implying
that C ′ is not a spectrahedron.

End of class on May 20 + May 22
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2.5 Löwner–John ellipsoids and roundness

Definition 2.40. An ellipsoid E ⊆ Rd is the image f(Bd) of the unit ball under an invertible
affine transformation f : Rd → Rd.

If the transformation is f : x 7→ Ax+ c, then

f(Bd) = {x ∈ Rd : 〈A−1(x− c), A−1(x− c)〉 ≤ 1}
= {x ∈ Rd : 〈Q(x− c), x− c〉 ≤ 1}

for Q = A∗A−1 = (AAt)−1 positive-definite.

Lemma 2.41. The volume of E is | detA|volBd = volBd
√
detQ

.

Exercise 2.42. If E = {x ∈ Rd : 〈Qx, x〉 ≤ 1}, show that the polar is E∗ = {x ∈ Rd :
〈Q−1x, x〉 ≤ 1}. Deduce that (volE)(volE∗) = (volBd)2.

Exercise 2.43. If g : Rd → Rd is a surjective linear map, and E ⊂ Rd is an ellipsoid, then g(E)
is an ellipsoid in Rk.

Lemma 2.44. Every ellipsoid E ⊂ Rd can be written in the form E = S(Bd) + c, where S is a
positive-definite (symmetric) matrix.

Proof. Use the (left) polar decomposition: every invertible A can be written as A = P ′U ,
where U = A

√
AtA

−1
is a unitary matrix, and P ′ = AU−1 =

√
AAt is positive-definite. Then

A(Bd) = S(Bd).

Lemma 2.45. If X, Y are positive-definite (symmetric square) matrices, then

det
(X + Y

2

)
≥
√

det(X) det(Y ),

with equality if and only X = Y .

Proof. We can write X = U tD2U for unitary U and non-negative diagonal D, and with this
Y = U tDY ′DU . With this we obtain that without loss of generality X = Id.
Furthermore, the resulting Y ′ can be diagonalized, and without loss of generality Y is diag-
onal. Then things reduce to simple inequalities of the form 1+λi

2
≥
√
λi for certain positive

eigenvalues λi.

Theorem 2.46 (Löwner–John). If K ⊂ Rd is a convex body, then the maximum-volume ellip-
soid E ⊆ K exists and is unique.

Proof. For the existence, consider the set

X := {(S, c) : S positive semidefinite, c ∈ Rd, S(Bd) + c ⊆ K}.

By Lemma 2.44, every ellipsoid in K is represented by a pair (S, c) in X . As K is bounded, we
get that X is bounded. It is also closed, so it is compact. Moreover, the volume function on X ,
given by det(S)vol(Bd), is continuous, so the maximum exists.
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To show that it is unique, first note that from any two ellipsoids of the same maximum volume
E1 = S1(B

d) + c1 and E2 = S2(B
d) + c2 we can construct a new one 1

2
(E1 + E2) given by

S := 1
2
(S1 +S2) and c := c1 +c2. Lemma 2.45 now yields that if both E1 and E2 have maximal

volume, then S1 = S2.
To see c1 = c2, we may now after a coordinate transformation assume that S1 = S2 = I is a
unit ball. So we just have to show that the convex hull of the union of two distinct unit balls
contains an ellipsoid of larger volume.

Theorem 2.47. The minimal volume ellipsoid that contains a given convex body K is also
unique.

Theorem 2.48. Let K ⊂ Rd be a convex body and let E ⊆ K be the maximal volume ellipsoid
in K, where we assume that its center is the origin 0. Then

E ⊆ K ⊂ dE.

Proof. Elementary calculation.

Theorem 2.49. Let K = −K ⊂ Rd be a centrally-symmetric convex body and let E ⊆ K be
the maximal volume ellipsoid in K. Then

E ⊆ K ⊂
√
dE.

Proof. Elementary calculation.

End of class on May 27

2.6 Volume computation and ellipsoids

Theorem 2.50 (Ernst Sas (1939) ). Let C be a convex disk (a convex body in the plane) and let
n ≥ 3 be an integer. If P(n) is an n-gon of maximal area contained in C, and P 2

n is a regular
n-gon inscribed into the unit disk B2, then

vol(P(n))

vol(C)
≥ vol(P 2

n)

vol(B2)
=

n

2π
sin

2π

n
,

with equality if and only if C is an ellipse.
(Extension by Alexander Macbeath (1951)) Let C be a convex body in Rd and let n ≥ d+ 1 be
an integer. If P(n) is a polytope with n vertices of maximal volume contained in C, and P d

n is a
convex polytope of maximal volume inscribed into the unit ball Bd, then

vol(P(n))

vol(C)
≥ vol(P d

n)

vol(Bd)
,

with equality if and only if C is an ellipsoid.

(Discussed without proof; see problem set for references.)
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Theorem 2.51 (György Elekes (1986)). Let P d
(n) be a convex d-polytope with n vertices con-

tained in Bd. Then
vol(P d

(n))

vol(Bd)
≤ n

2d
.

Proof. If P = conv{v1, . . . , vn}, show that the balls with diameter [0, vi] cover P . Each of
these has volume at most 1

2
vol(Bd).

Definition 2.52 (oracles). MEMBERSHIP, SEPARATION
VALIDITY, VIOLATION

Definition 2.53 (guarantees). A convex body is well-guaranteed if we know that
• C ⊆ B(0, R)

and if one of the (equivalent!) properties holds:
• C contains a ball of radius r0, for a specified r0 > 0.
• C has width w0, for a specified w0 > 0.
• C has volume at least v0, for a specified v0 > 0.

Corollary 2.54. A well-guaranteed MEMBERSHIP oracle needs exponential time for any rea-
sonable volume estimate.

2.7 The Ellipsoid method

Lemma 2.55. Let Bd
+ = {x ∈ Rd : |x|2 ≤ 1, xd ≥ 0 be the “positive half d-ball.” Then the

ellipsoid

E :=
{
x ∈ Rd : (1− 1

d2
)(x21 + · · ·+ x2d−1) + (1 + 1

d
)2(xd − 1

d+1
) ≤1

}
satisfies

1. Bd
+ ⊆ E,

2.
volE

volBd
+

≤ e−1/(2(d+1)).

Proof. Simple calculations. For (2) use 1 + x ≤ ex.

End of class on June 3

Theorem 2.56 (Ellipsoid Method: Khatchian, Grötschel–Lovász–Schrijver). If a convex body
is given by a well-guaranteed SEPARATION oracle, e.g. by the guarantee that if C is not empty
then it satisfies

B(x0, r) ⊆ C ⊆ B(x,R)

for known r ≤ R but unknown x0, then there is an algorithm that decides that C is empty or
finds a point x ∈ C after at most

2d(d+ 1) ln
R

r
calls to the oracle.
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Proof. Start with E0 := B(0, r), and construct a sequence of ellipsoids E0, E1, . . . by querying
the center ci of Ei. If ci ∈ C we are done, otherwise Lemma 2.55 yields Ei+1 such that we have

(1) If C is not empty, then B(x0, r) ⊆ Ei+1,

(2) vol
vol(Ei+1)

vol(Ei)
≤ e−y

1
2(d+1) .

Thus the sequence breaks off at some ellipsoid En with

n ≤ 2(d+ 1)
vol(B(0, R))

vol(B(x0, r))
= 2(d+ 1)

Rd

rd
.

2.8 Polarity, and the Mahler conjecture

Definition 2.57 (Polar dual). For ∅ 6= K ⊂ Rd:

K∗ := {c ∈ Rd : ctx ≤ 1 for allx ∈ K}

is the polar of the set K.

Lemma 2.58. Let ∅ 6= K ⊂ Rd.

(1) 0 ∈ K∗; the set K∗ is closed and convex.

(2) (Rd) = {0}, {0}∗ = Rd; for any linear subspace L ⊂ Rs, L∗ = L⊥.

(3) K ⊆ L implies L∗ ⊆ K∗.

(4)
(⋃

i∈I Ki

)∗
=
⋂
i∈I Ki

∗.

(5) (αK)∗ = 1
α
K∗ for α > 0.

(6) (AK)∗ = (At)−1K∗ for any invertible (d× d)-matrix A.

(7) K = conv{v1, . . . , vn} implies K∗ = {y ∈ Rd : ytvi ≤ 1 for 1 ≤ i ≤ n}.

(8) K ⊆ K∗∗.

Theorem 2.59 (Bipolar theorem). If K ⊆ Rd is closed, convex, and contains 0, then K = K∗∗.

Note: If K is a V-polytope, then K∗ is anH-polyhedron, etc.
End of class on June 5

Definition 2.60. The Hanner polytopes are the polytopes that can be generated from the interval
I := [−1,+1] by any two of the three operations polarity, direct sum ⊕, and product ×.

(Any two of the operations allow us to also “simulate” the third one here, as I∗ = I and
P ⊕Q = (P ∗ ×Q∗)∗ and P ×Q = (P ∗ ⊕Q∗)∗.)
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Proposition 2.61 (On Hanner polytopes). (0) The number of combinatorial types for d ≥ 1
grows exponentially: n(d) = 1, 1, 2, 4, 8, 18, 40, 94, . . .

(1) All Hanner polytopes have 3d non-empty faces, f0 + f1 + · · ·+ fd = 3d.
(2) All Hanner polytopes satisfy vol(P )vol(P ∗) = 4k

d!

Conjecture 2.62 (The Mahler conjecture: Kurt Mahler, 1939; the 3d conjecture: Kalai 1988).
Let K be a convex body in Rd with K = −K, then

vol(K)vol(K∗) ≥ 4k

d!

with equality exactly for the Hanner polytopes.
Let P be a d-polytope in Rd with P = −P , then

f0 + f1 + · · ·+ fd ≥ 3d

with equality exactly for the Hanner polytopes.

Note that for the (long-standing) Mahler conjecture, it is not even clear that the extremal objects
are polytopes, as we are searching in the class of convex bodies. It is also not trivial that objects
(convex bodies) achieving the minimum even exist! (This needs a compactness result such as
the Blaschke selection principle, to be discussed later.)
For a recent overview/discussion of the Mahler conjecture [4], see Tao’s blog [6].
For proofs/details on Hansen polytopes and the 3d conjecture, see Hansen [2], Kalai [3], as well
as Sanyal et al. [5].

End of class on June 10
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3 Geometric inequalities, mixed volumes, and isoperimetric
problems

3.1 Introduction: Arithmetic inequalities

Lemma 3.1. Among all rectangles with area A a square has the minimal inequality.

Proof. This translates into
2(a+ b) ≥ 4

√
ab

for a, b ≥ 0, with equality if and only if a = b, where the left-hand side is the perimeter, the
right-hand side is 4 times the area. The inequality is equivalent to

√
ab ≤ a+b

2
, that is, geometric

mean is smaller or equals to arithmetic mean, which is proved by squaring, where ab ≥ (a+b
2

)2

is equivalent to (a− b)2 ≥ 0.

Theorem 3.2 (Arithmetic-Geometric Mean inequality). For z1, . . . , zn ≥ 0,

z1 + · · ·+ zn
n

≥ n
√
z1 · · · zn

with equality only if all zi are equal.

Proof. We discussed two proofs. The first one noted that all this is trivial if one of the zi is zero,
and otherwise with the substitution zi = eyi this can be derived from convexity of the function
y 7→ ey.
Second proof: by a non-standard induction, taken from [1].

Lemma 3.3 (“Minkowski’s inequality”). For x1, . . . , xn, y1, . . . , yn ≥ 0, we have

n
√

(x1 + y1) · · · (xn + yn) ≥ n
√
x1 · · ·xn + n

√
y1 · · · yn,

with equality if and only if
• xi = λyi for all i and a fixed λi,
• x1 = · · · = xn = 1,
• y1 = · · · = yn = 1, or
• xi = yi = 0 for some value of i.

Proof. In the case that xi = yi = 0 for some value of i the inequlity is clearly true with equality.
Otherwise we have xi + yi > 0 for all i and thus can set

x′i :=
xi

xi + yi
, y′i :=

yi
xi + yi

for all i, so we have to prove that

n
√
x′1 · · ·x′n + n

√
y1 · · · yn ≤ 1,

which is obtained from a simple calculation using the AGM inequality as well as x′i + y′i = 1.
The remaining equality cases are also obtained from the AGM inequality.
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3.2 Brunn’s Slice Inequality and the Brunn–Minkowski Theorem

For the following, let K ⊂ Rd+1 be a (d + 1)-dimensional convex body. For c 6= 0 we slice it
by the parallel hyperplanes Ht := {x ∈ Rt+1 : ctx = t, and consider the volume of the slices,
measured by the function

fK(t) := vol(K ∩Ht).

Definition 3.4 (unimodal/concave function). A function f : R → R is unimodal if a < b < c
implies that f(b) ≥ min{f(a), f(c)}.
f is concave if f(b) ≥ b−c

a−cf(a)+ b−a
c−af(c) for a < b < c, or equivalently if f((1−λ)a+λf(c)) ≥

(1− λ)f(a) + λf(c).

Important observation: fK(t) is in general not concave!

Theorem 3.5 (Brunn’s slice inequality). Let K ⊂ Rd+1 be a (d+ 1)-dimensional convex body,
and let fK(t) := vol(K ∩ Ht) be the slice function for the parallel hyperplanes Ht := {x ∈
Rt+1 : ctx = t, then

d
√
fK : t 7−→ d

√
vol(K ∩Ht)

is concave on the interval [tmin, tmax] = {t ∈ R : K ∩ Ht 6= 0}. Thus, in particular, fK is
unimodal on all of R.

End of class on June 12

Theorem 3.6 (“Brunn–Minkowski inequality”). (1) Let K,L ⊂ Rd be convex bodies, then

d
√

vol(K + L) ≥ d
√

vol(K) + d
√

vol(K)

with equality if and only if K and L are positively homothetic, that is, K = µL + x0 for a
positive factor µ > 0 and a translation vector x0 ∈ Rd.
(2) LetK,L ⊂ Rd be nonempty compact (closed bounded) convex sets, then the same inequality
holds, with equality if and only if
• K and L are positively homothetic,
• K and L lie in parallel hyperplanes, or
• one of K and L is a point.
(3) Let K,L ⊂ Rd be compact and nonempty, then the inequality above still holds.

Remark 3.7. An equivalent version writes the Brunn–Minkowski Inequality (BMI) as

d
√

vol((1− λ)K0 + λK1) ≥ (1− λ) d
√

vol(K0) + λ d
√

vol(K1)

for 0 ≤ λ ≤ 1.

Proof that the Brunn–Minkowski inequality 3.6 implies the Brunn Slice Theorem 3.5. Without loss
of generality we may assume that ctx = xd+1.
Furthermore without loss of generality we use a = 0 and b = 1.
Define K0 × {0} := K ∩H0 and K1 × {1} := K ∩H1. Then K contains the so-called Cayley
embedding of K0 and K1 into parallel hyperplanes,

C(K0, K1) = conv{(K0 × {0}) ∪ (K1 × {1})},
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with
K ∩Hλ ⊇ C(K0, K1) ∩Hλ = ((1− λ)K0 + λK1)× {λ})}.

For this, the BMI yields

d
√

vol(Kλ) ≥ d
√

vol((1− λ)K0 + λK1) ≥ (1− λ) d
√

vol(K0) + λ d
√

vol(K1)

and we are done.

Now we tackle the Brunn–Minkowski Inequality (Theorem 3.6), where we use a combinatorial
approach, which yields the most general part (3), however without the characterization of the
cases of equality.

Lemma. BMI holds for nonempty convex sets if it holds for polyboxes.

Here we use knowledge from Measure Theory: We can approximate any compact set in Rd

arbitrarily well with finite unions of axis-parallel rectangular boxes, in such a way that in the
limit the measure of the boxes yields the measure of the convex set.
A polybox consisting of n boxes is a union n axis-parallel rectangular boxes in Rd with disjoint
interiors. (The condition of “disjoint interiors” is irrelevant for the types of subsets we obtain,
but it is relevant for the number n of boxes needed to get a set.)

Proof of the Brunn–Minkowski inequality 3.6, part (3), for polyboxes. Let S, T ⊂ Rd, which
together have n ≥ 2 polyboxes. We will use induction on the number n of boxes.
The case of n = 2 is precisely given by the Minkowski inequality, Lemma 3.3.
For n > 2 we may assume that K contains of at least 2 boxes.
We can now find a coordinate hyperplane, w.l.o.g. H = {x ∈ Rd : xd = 0}, which separates
two boxes of S, such that there are less than n boxes of S and T that have volume above H and
also less than n boxes below.
Let p := vol(S+)

vol(S)
be the fraction of volume of K above H , so 0 < p < 1.

Translate T so that it has the same volume fraction p = vol(T+)
vol(T )

.

Now we compute, using in the first step that S+ + T+ ⊆ {x ∈ Rd : xd ≥ 0 and S− + T− ⊆
{x ∈ Rd : xd ≤ 0 lie in opposite halfspaces, so their interiors don’t overlap, and in the second
step the BMI,

vol(S + T ) ≥ vol(S+ + T+) + vol(S− + T−)

≥ ( d
√

vol(S+) + d
√

vol(T+))d + ( d
√

vol(S−) + d
√

vol(T−))d

= ( d
√
p d
√

vol(S) + d
√
p d
√

vol(T ))d + ( d
√

1− p d
√

vol(S) + d
√

1− p d
√

vol(T ))d

= p( d
√

vol(S) + d
√

vol(T ))d + (1− p)( d
√

vol(S) + d
√

vol(T ))d

= ( d
√

vol(S) + d
√

vol(T ))d.
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3.3 Minkowski’s existence and uniqueness theorem

Theorem 3.8 (Minkowski’s existence and uniqueness theorem). Let d ≥ 1, a1, . . . , an ∈ Rd

distinct unit vectors, spanning, and α1, . . . , αn > 0.
Then a d-polytope P ⊂ Rd with unit facet normals ai and facet volumes αi exists if and only if

α1a1 + · · ·+ αnan = 0.

This is trivial for d = 1 and elementary (Exercise) for d = 2.

Proof. For the “only if” part we consider an arbitrary projection along a vector c, and find
vol(Fi) = 〈c, ai〉vol(Fi), and in the projection the volumes (with signs!) add to zero, so

〈c, α1a1 + · · ·+ αnan〉 = 0.

As this holds for every c, we are done.
For the “if” part we have to construct a suitable polytope for given data ai and αi.
For this we define the matrix A ∈ Rn×d with rows at1, . . . , a

t
n, and the vector of right-hand sides

b ∈ Rn. Consider the polyhedron PA(b) as a function of the right-hand sides,

PA(b) := {x ∈ Rd : Ax ≤ b}.

We consider the set of right-hand sides for which the polyhedron PA(b) is non-empty,

BA := {b ∈ Rn : PA(b) 6= ∅},

and its subset of right-hand sides where the polyhedron has volume at least 1,

MA := {b ∈ Rn : vol(PA(b)) ≥ 1}.

Proposition 3.9. If the rows of A are spanning and positively dependent, then

BA = im(A) + Rn
≥0.

where im(A), the image of x 7→ Ax, is the column span of the matrix A. In particular, BA
is a convex polyhedral cone, and its lineality space is imA, that is, the complete lines in BA
correspond to translations in Rd.

(The proof of the proposition is left to the reader.)
End of class on June 17

Proposition 3.10. If the rows of A are spanning and positively dependent, thenMA is a convex
set with lineality space imA. Moreover,MA :=MA/im(A) is a strictly convex closed convex
set.

Proof. Let b′, b′′ ∈ MA be right-hand sides that yield polyhedra PA(b′), PA(b′′) of volume at
least 1, and b := (1− λ)PA(b′) + λPA(b′′).
Then we find

(1− λ)PA(b′) + λPA(b′′) ⊆ PA(b).
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(Check this!)
Applying the BMI now yields

vol(PA(b)) ≥ vol((1− λ)PA(b′) + λPA(b′′))

≥ (1− λ)vol(PA(b′)) + λvol(PA(b′′)) ≥ 1.

Equality here means that we need that both PA(b′) and PA(b′′) have volume 1 (for the third
inequality), where PA(b′) and PA(b′′) need to be positive homothets to get equality in the second
inequality (the BMI), so as they have the same volume they need to be translates, which implies
that b′ − b′′ ∈ im(A).

Proposition 3.11. On the interior of BA, the function b 7→ vol(PA(b)) is differentiable (it is
piecewise-polynomial), with

∂

∂bi
vol(PA(b)) = vold−1(PA(b)ai) = vold−1(Fi(PA(b))).

Proof. Elementary geometry: If we vary bi a bit, PA(b) changes by moving the facet hyperplane
of Fi, and the volume of the difference to first order is the volume of the facet Fi times the height
of variation.

End of class on June 19

Corollary 3.12. In every boundary point b0 ∈ ∂MA, there is a unique supporting hyperplane,
which is given by

H = {y ∈ Rn :
1

d

∑
i

vol(Fi(PA(b0)))yi = 1}.

Proof. This relies on the volume formula for PA(b), which is

vol(PA(b)) = 1
d
vol(Fi(PA(b)))bi

which is elementary. (For this consider first x as an interior point of PA(b), then PA(b) de-
composes into pyramids with base Fi(PA(b)) and height hi = bi − atix. The volume thus is
vol(PA(b)) = 1

d
vol(Fi)(bi − atx), which gives the correct result, which of course has to be

independent of x, by the “only if” part of the Existence and Uniqueness theorem, for which we
had established that

∑
i vol(Fi)a

i = 0.)

Now to proceed with the proof of Minkowski’s Existence and Uniqueness Theorem, we con-
sider the optimization problem

minimize φ(b) :=
n∑
i=1

αibi

subject to b ∈MA

Here we minimize a linear function over a closed convex set. One can check that the minimum
exists, is positive, and is assumed at a point B∗ that is unique up to translation of the polytope
PA(b) (asMA/im(A) is strictly convex).
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At the point b∗, we know that the gradient of the volume function vol(PA(b)) coincides with
linear function we are trying to minimize. From this we get that b∗ lies on the hyperplane

1

d

∑
i

vol(Fi(b
∗))yi = 1

as it lies on the support hyperplane ofMA at the point b∗, and it lies on the hyperplane

1

d

∑
i

αiyi = φmin

by construction, where the normal vectors to the hyperplanes must be multiples of each other.
From this we see that

vol(Fi(PA(b∗))) =
αi
φmin

holds for all i. This yields that
PA( 1

d√φmin
)

is the polytope we were looking for, to complete the proof of Minkowski’s Existence and
Uniqueness Theorem.

Note: this is constructive “in principle.”
Applications, for example: If all polytopes in a dissection P = P1 ∪ · · · ∪ Pm are centrally
symmetric, then so is P .

End of class on June 24

3.4 Application: Sorting partially ordered sets

Definition 3.13. (X,�) a finite partially ordered set, then e(X,�) is the number of linear
extensions of (X,�).

Clearly 1 ≤ e(X,�) ≤ n!, with equality for a linear order (also known as chain or total order)
resp. for an anorderd set (antichain).

Theorem 3.14 (Efficient comparison theorem). Let (X,�) be a finite partial order that is not
linear. Then there are elements a, b ∈ X such that

δ ≤ e(X,� +(a, b))

e(X,�)
≤ 1− δ,

where δ is a constant.

Here e(X,� +(a, b)) denotes the partial ordering we obtain from e(X,�) if we are given the
additional information that a ≤ b.
We will sketch a proof by Kahl & Linial (1991) which yields this for . . . . . . . δ = 1

2e
≈ 0.1840.

The original proof by Kahn & Sachs (1984) yielded . . . . . . . . . . . . . . . . . . . . . . δ = 3
11
≈ 0.2727.

The current best bound by Brightwell, Felsner & Trotter (1995) is . . . . . . . δ = 5−
√
5

10
≈ 0.2764.

The conjecture is that this should be true for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . δ = 1
3
≈ 0.3333,

which would be optimal. See: Matoušek [5, Sect. 12.3].
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Remark 3.15 (The complexity of sorting a partially ordered set). If we are supposed to sort
a partially ordered set by pairwise comparisons, that is, find the unknown linear order from
partial data by queries to a comparison oracle, the worst case complexity is certainly at least
log2 e(X,�). For example, this yields the well-known lower bound of log2 n ≈ n log2 n for
sorting without previous information.
The “efficient comparison theorem” yields an upper bound: If we choose our comparisons
judiciously, log1/(1−δ) e(X,�) steps will be enough.

Definition 3.16. For a given partial order (X,�) on a set X of size n, which for simplicity we
identify with {1, . . . , n}, the order polytope is

P (X,�) := {x ∈ [0, 1]n : xa ≤ xb for all a, b ∈ X with a � b}.

Lemma 3.17. The number of vertices of P (X,�) is the number of order ideals (a.k.a. down-
sets) of (X,�). Indeed, the vertices are the characteristic vectors of the dual order ideals (a.k.a.
up-sets) of (X,�).
The volume of P (X,�) is 1

n!
e(X,�).

Proof. P (X,�) has a canonical triangulation into simplices of determinant 1 (that is, volume
1
n!

) corresponding to the linear extensions.

Definition 3.18 (height). Let X be a finite set and a ∈ X .
For a linear ordering (X,≤), the height of a in (X,≤) is defined as the number of elements
below a, h≤(a) := |{x ∈ X : x ≤ a}|.
For a partial ordering (X,�), the height of a in (X,�) is definied as the average number of
elements below a in the linear extensions of (X,�), that is,

h�(a) :=
1

e(X,�)

∑
≤∈E(X,�)

h≤(a).

Lemma 3.19. For any poset (X,�) on an n-element set X , the center of gravity of its order
polytope P (X,�) has the coordinates ca = 1

n+1
h�(a).

Proof. The center is the average of the centers of the simplices in the triangulation.

Proof of the Efficient Comparison Theorem 3.14.
(1) Pick elements a 6= b inX with |h�(a)−h�(b)| < 1. In particular, a and b are not comparable
in �. If (X,�) is not a linear order, these exist (Exercise!)
We want to show that (a, b) solves the problem. For this we have to show that the hyperplane
xa = xb splits the polytope P (X,≤) into two parts that each have a constant fraction of the
volume of the whole polytope.
(2) Choose a new orthonormal coordinate system y1, . . . , yn, where y1 = xa − xb.
(Note: The coordinate transformation can be obtained by an orthogonal transformation followed
by a rescaling by factor 1

2

√
2.)

In these new coordinates, the splitting hyperplane is given by y1 = 0. The polytope P =
P (X,�) in these new coordinates has two properties:
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• The projection of P to the first coordinate is [−1, 1].
(There are vertices corresponding to up-sets that contain a but not b, and the other way
around.)
• The center of gravity satisfies − 1

n+1
< c1 <

1
n+1

.
(Indeed, c1 = 1

n+1
(h�(b)− h�(a)) with |h�(a)− h�(b)| < 1)

We want to show that these two properties already imply what we need, namely every convex
body with these two properties satisfies vol(Py1≥0) ≥ 1

2e
vol(P ) and vol(Py1≤0) ≥ 1

2e
vol(P ).

(3) The y1-coordinate of the center of gravity is given by the volume of the slices by

c1(P ) =
1

vol(P )

∫ 1

−1
t voln−1(Pt)dt.

Thus we can replace P by a rotationally symmetric convex bodyR with the same properties and
with the same center of gravity, given by the radius function r(t). By Brunn’s Slice Inequality
(Theorem 3.5), the function r(t) is convex, and thus the resulting body R is convex.
(4) Replace R by a double cone K, determined by radius function κ(t), with the following
properties
◦ vol(K≥0) = vol(R≥0), while the center of gravity of R≥0 moves to the right, if at all (“move

mass”.)
◦ vol(K≤0) = vol(R≤0), while the center of gravity of R≥0 moves to the right, if at all (“move

mass”.)

(5) Computations for the double cone K: It is determined by the y1-coordinate of the “base,”
called −∆, and by the heights h1 = 1−∆ and h2 = u+ ∆ ≥ 1 + ∆.
The barycenter is computed to satisfy c1(K) = h2−h1

n+1
−∆, which yields u

h2
≥ 1− 1

n
.

And from this we get the volume estimate

vol(K≥0) =
u

u+ 1

(
u

h2

)n
vol(K2)

=
u

u+ 1

(
u

h2

)n
h2

h1 + h2
vol(K)

≥ u

u+ 1

(
1− 1

n

)n−1
vol(K) ≥ 2e

vol
(K).

See Matoušek [5, Sect. 12.3] for details.

End of class on June 26
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3.5 Mixed subdivisions and the Cayley trick

Definition 3.20. Let again A ∈ Rn×d have disjoint rows of length 1 and let b ∈ Rn.
The closed inner region B◦A ⊆ BA is the set of all right-hand sides b such that all inequalities
define a non-empty face:

B◦A = {b ∈ Rn : PA(b) ∩ {x ∈ Rd : atix = bi} 6= ∅ for all i}.

Note that B◦A is a closed polyhedral cone again! In the following for a polyhedron P ⊆ Rd and
a vector c ∈ Rd, the expression P c denotes the face of P in direction of c.

Definition 3.21. Define P ≤w Q if dimP c ≤ dimQc for all c ∈ Rd.
Define P ∼w Q if dimP c = dimQc for all c ∈ Rd.
In the latter case, P and Q are called normally equivalent.
The type cone of b is

TA(b) := {b′ ∈ Rd : PA(b′) ∼w PA(b)}
Its closure is called the closed type cone of b.

Proposition 3.22. The type cone TA(b) is a relatively open polyhedral cone.
Thus the closure of the type cone TA(b) is a polyhedral cone.
The type cones define a polyhedral subdivision of B◦A.
Its maximal cells correspond to the types of simple polytopes PA(b) for which each ai defines a
facet.

Proposition 3.23. P ≤w Q holds if and only if λQ = P +R for some λ > 0 and a polytope R.
PA(b′ + b′′) = PA(b′) + PA(b′′) holds if and only if b′ and b′′ lie in the same closed type cone.

Corollary 3.24. Restricted to a type cone TA(b), the volume function is given in the form

vol(PA(b)) = vol(λ1P1 + · · ·+ λnPn),

where Pi span the rays of the type cone TA(b)/im(A).

Theorem 3.25 (Minkowski’s Theorem). If K1, . . . , Kn ⊆ Rd are compact convex sets, then for
λ1, . . . , λn ≥ 0

vol(λ1K1 + · · ·+ λnKn)

is a homogeneous polynomial of degree d.

Notation:
• r := (r1, . . . , rn) ∈ Nn

0 ,
• |r| := r1 + · · ·+ rn,
• Nn

0 (d) := {r ∈ Nn
0 : |r| = d},

• λr := λr11 · · ·λrnn .
With this notation, the homogeneous polynomial of degree d in Minkowski’s theorem can com-
pactly be written as

V (λ1, . . . , λn) = vol(λ1K1 + · · ·+ λnKn) =
∑

r∈Nn
0 (d)

crλ
r.
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Proof. We proceed in three steps.
(1) It suffices to prove the theorem for the case when the Ki are convex polytopes. For this, we
can use the following convergence result:
If f1, f2, . . . are homogeneous polynomials of degree d in n variables, and lims→∞ fs(λ) = f(λ)
for all λ ≥ 0, then f(λ1, . . . , λn) is also a homogeneous polynomial of degree d.
Thus we can approximate the Ki by polytopes Pi better and better and use continuity.
(2) If the Minkowski sum is a direct sum (“the Minkowski sum is exact”),

dim(P1 + · · ·+ Pn) = dim(P1) + · · ·+ dim(Pn),

then

vol(λ1P1 + · · ·+ λnPn) =
n∏
i=1

λ
dim(Pi)
i vol(P1 + · · ·+ Pn).

End of class on July 1

(3) To prove this part, we use “exact mixed subdivisions.”
Notation:
• Pi = conv(Vi) for a finite set Vi,
• S = (S1, . . . , Sn) with Si ⊂ Vi,
• 〈S〉 := conv(S1) + · · ·+ conv(Sn) ⊆ P1 + · · ·+ Pn,
• The type of S is d(S) = (d1, . . . , dn) = (dim conv(S1), . . . , dim conv(Sn)),
• λ · S := (λ1S1 . . . , λnSn),
• so 〈λ · S〉 = λ1conv(S1) + · · ·+ λnconv(Sn).

Definition 3.26. A mixed subdivision of P = P1+· · ·+Pn is a collection S ⊆ 2V1×· · ·×2Vn =
{(S1, . . . , Sn) : Si ⊆ Vi} if the polytopes

〈S〉 = conv(S1) + · · ·+ conv(Sn) for S ∈ S

form a subdivision of P .
In this subdivision, we also require that “faces fit together”, that is, that 〈S〉∩〈S ′〉 is of the form
〈T 〉, there each conv(Ti) is a face of both Si and S ′i.
The subdivision is exact if 〈S〉 is exact for all S ∈ S.
It is called fine if it is exact and additionally the conv(Si) are simplices with vertex set Si.

Thus a mixed subdivision of P = P1 + · · · + Pn consists of pieces of the form F1 + · · · + Fn
for Fi = conv(Si) and Si ⊆ Vi with conv(Vi) = Pi.
Examples! Examples:
• not mixed, not exact
• mixed, not exact
• not mixed, exact
• mixed, exact.

Now if we assume that we have an exact mixed subdivision S of P = P1 + · · · + Pn, and
λ1, . . . , λn > 0, then also λ · S is a mixed subdivision of λ1P1 + · · · + λnPn (check this: This
uses the “faces fit together”-condition!).
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Thus we get that

vol(λ1P1 + · · ·+ λnPn) =
∑
S∈S

dim〈S〉=d

vold(〈λ · S〉) =
∑
S∈S

dim〈S〉=d

λd(S)vold(〈S〉).

This also holds for λ ≥ 0 by continuity. This completes the proof of Minkowski’s theorem,
modulo existence of mixed subdivision.

Definition 3.27 (The Cayley embedding). For polytopes P1, . . . , Pn ⊂ Rd the Cayley embed-
ding is

C(P1, . . . , Pn) := conv
(
P1 × {e1}, . . . , Pn × {en}

)
⊂ Rd×n.

In particular, if Vi ⊆ Pi are finite subsets with conv(Vi) = Pi, this defines a subset V (V1, . . . , Vn) ⊆
C(P1, . . . , Pn) by

V (P1, . . . , Pn) := (V1 × {e1}) ∪ · · · ∪ (Pn × {en}) ⊆ C(P1, . . . , Pn)

with convV (P1, . . . , Pn) = C(P1, . . . , Pn).

Theorem 3.28 (The Cayley trick). Let P1, . . . , Pn ⊂ Rd be polytopes, then
(i) the mixed subdivisions of P1+· · ·+Pn are in bijection with the subdivisions ofC(P1, . . . , Pn)

with vertex set contained in V (P1, . . . , Pn),
(ii) the fine mixed subdivisions of P1 + · · · + Pn are in bijection with the triangulations of

C(P1, . . . , Pn) with vertex set V (P1, . . . , Pn).
In particular, as such triangulations of C(P1, . . . , Pn) exist, there are fine (and hence exact)
mixed subdivisions of P1 + · · ·+ Pn.

Proof. We do not provide the proof here, but refer to De Loera et al. [2]. Note that the “easy”
part is to verify that

(i) subdivisions of the Cayley polytope give mixed subdivisions of the (rescaled) Minkowski
sum 1

n
P1 + · · ·+ 1

n
Pn,

(ii) triangulations of the Cayley polytope give mixed subdivisions of the (rescaled) Minkowski
sum,

as they “give” this plainly by intersection of C(P1, . . . , Pn) with the subspace H( 1
n
,..., 1

n
) :=

Rd × {( 1
n
, . . . , 1

n
} — and this “easy” part is exactly what we need to complete the proof of

Minkowski’s theorem.

End of class on July 3
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3.6 The mixed volumes

Definition 3.29 (Mixed volume). Let K1, . . . , Kd ⊂ Rd be nonempty compact convex sets.
The mixed volume MV(K1, . . . , Kd) of K1, . . . , Kd is defined to be a symmetric function of the
arguments such that d!MV(K1, . . . , Kd) appears as the coefficient of λ1 · · ·λd in the polynomial
vold(λ1K1 + · · ·+ λdKd), that is, by

MV(K1, . . . , Kd) =
1

d!

∂d

∂λ1 · · · ∂λd
vold(λ1K1 + · · ·+ λdKd).

The mixed volume MV(K1, . . . , Kd) of K1, . . . , Kd is 0 if dim(K1 + · · ·+Kd) < d.

Proposition 3.30 (Properties of the mixed volume). Let K1, . . . , Kd ⊂ Rd be compact convex
sets with dim(K1 + · · ·+Kd) = d.

(i) MV(K1, . . . , Kd) is symmetric in the arguments.
(ii) MV : Kd × · · · × Kd → R is continuous (in the space Kd of compact convex sets with a

suitable metric, to be detailed later; see Section 3.7)
(iii) MV(K1, . . . , Kd) ≥ 0.
(iv) MV(K, . . . ,K) = vold(K).
(v) MV is invariant under rigid motions T .

Proof. (i) by definition.
(ii) approximation: volume is continuous.
(iii) approximate by polytopes, then note that MV is given by volumes of pieces in an exact
mixed subdivision.
(iv) compute: vold(λ1K + · · ·+ λdK) = (λ1 + · · ·+ λd)

dvold(K).
(v) clear by definition.

Definition 3.31 (Mixed volumes with multiplicities). LetK1, . . . , Kn ⊂ Rd be compact convex
sets with dim(K1 + · · ·+Kn) = d and r1, . . . , rn ∈ N0 with r1 + · · ·+ rn = d. Then

MV(K1[r1], . . . , Kn[rn]) := MV(K1, . . . , K1︸ ︷︷ ︸
r1

, . . . , Kn, . . . , Kn︸ ︷︷ ︸
rn

).

Proposition 3.32 (The coefficients of the Minkowski polynomial are mixed volumes with multi-
plicities). For n ≥ 1 letK1, . . . , Kn ⊂ Rd be compact convex sets with dim(K1+· · ·+Kn) = d.
Then

vold(λ1K1 + · · ·+ λnKn) =
∑

r∈Nn
0 (d)

d

r1! · · · rn!
MV(K1[r1], . . . , Kn[rn])λr11 · · ·λrnn .

Proof. Let the Minkowski polynomial vold(λ1K1 + · · ·+ λnKn) of degree d be
∑

r crλ
r.

Now assume that for some r = (r1, . . . , rn) ∈ Nn
0 (d) we take ri copies of each Ki, and consider

the resulting r1 + · · · + rn = d convex sets (with multiplicities). Their Minkowski polynomial
is

vold(λ11K1 + · · ·+ λ1r1K1 + · · ·+ λn1Kn + · · ·+ λnrnKn)
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and the coefficient of λ11 · · ·λ1r1 · · ·λn1 · · ·λnrn in this polynomial is d!MV(K1[r1], . . . , Kn[rn]),
by definition. We can compute the Minkowski polynomial as

vold(λ11K1 + · · ·+ λ1r1K1 + · · ·+ λn1Kn + · · ·+ λnrnKn)

= vold((λ11 + · · ·+ λ1r1)K1 + · · ·+ (λn1 + · · ·+ λnrn)Kn).

=
∑

r∈Nn
0 (d)

cr(λ11 + · · ·+ λ1r1)
r1 · · · (λn1 + · · ·+ λnrn)rn

The coefficient of λ11 · · ·λ1r1 · · ·λn1 · · ·λnrn in this polynomial is r1! · · · rn!cr, so

r1! · · · rn!cr = d!MV(K1[r1], . . . , Kn[rn]),

and that’s what we wanted to get.

Corollary 3.33 (Multilinearity of mixed volumes). For α, β ≥ 0, and compact convex sets
K ′1, K

′′
1 , K2, . . . , Kd,

MV(αK ′1 + βK ′′1 , K2, . . . , Kd) = αMV(K ′1, K2, . . . , Kd) + βMV(K ′′1 , K2, . . . , Kd).

Proof. Exercise?

Corollary 3.34 (Mixed volumes are valuations). ForK2, . . . , Kd compact convex sets, the func-
tion

K 7→ MV(K,K2, . . . , Kd)

on compact convex sets is a valuation, that is,

MV(K,K2, . . . , Kd)+MV(L,K2, . . . , Kd) = MV(K∩L,K2, . . . , Kd)+MV(K∪L,K2, . . . , Kd)

whenever K ∪ L convex.

End of class on July 8

3.7 The space of convex bodies

Definition 3.35. Let Cd be the set of nonempty compact subsets of Rd.
Let Kd be the set of nonempty compact convex sets in Rd.

In particular, Kd ⊂ Cd.

Definition 3.36 (Hausdorff distance, Hausdorff metric). Given two sets K,L ∈ Cd, we call

∂(K,L) := max{max
x∈K

min
y∈L
|x− y|,max

x∈L
min
y∈K
|x− y|}.

the Hausdorff distance between K and L. We call δ the Hausdorff metric on Cd.

Example 3.37. Of two cubes with side lengths 1, where one cube is a horizontal translation by
1/2. Their Hausdorff distance is 1/2.
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Lemma 3.38 (Equivalent definitions). Given K,L ∈ Cd,
(i) ∂(K,L) = min{λ ≥ 0 : K ⊆ L+ λBd and L ⊆ K + λBd}

(ii) ∂(K,L) = min{ε ≥ 0 : K ⊆ Lε and L ⊆ Kε}, where Lε =
⋃
x∈L{u ∈ Rd : |x − u| ≤

ε}.

Exercise!

Lemma 3.39 (∂ is a metric). The Hausdorff metric is indeed a metric on Cd.

Proof. All properties except for the triangle inequality are immediate. For the triangle equality
use Lemma 3.38 (i) and add the λ’s.

Proposition 3.40. Given sets K,L ∈ Cd, we have

|diam(K)− diam(L)| ≤ 2δ(K,L).

Proof. For x, y ∈ K bound |x − y| above using the triangle inequality and the fact that there
are x′ and y′ that have Euclidean distance no more than δ(K,L).

Proposition 3.41 (Polytopes are dense in Kd). For every set K ∈ Kd and every ε > 0 there is
a polytope P ⊂ Kd such that

P ⊆ K ⊂ P + εBd.

Proof. Given ε > 0, cover the boundary of K with open ε balls with center on the boundary.
Now define P as the convex hull of the centers of the balls in the finite subcollection.

Theorem 3.42 (Generalized Blaschke selection theorem). Every bounded sequence in Cd has a
convergent subsequence.

Lemma 3.43. The set Kd is a closed subset of Cd. The set Kdd of full-dimensional sets in Kd is
not closed for d ≥ 2.

Proof. Using ε-δ-type arguments, show that every sequence in Kd not only converges to a
nonempty compact but also convex set. The set Kdd is not closed, since for example a sequence
of nested cubes with decreasing side lenghts converges to a point. Alternatively, substitute sets
in Cd be sets in Kd and note that no step in the proof of Theorem 3.42 kills convexity.

Corollary 3.44 (The Blaschke Selection Theorem). Every bounded sequence in Kd has a con-
vergent subsequence.

Corollary 3.45. Every bounded and closed subset of Kd or of Cd is compact.

Corollary 3.46. Both Kd and Cd are complete metric spaces with respect to the Hausdorff
metric.

Proof of Theorem 3.42. Take a bounded sequence (K0
i )i∈N. It is contained in some cube C with

side length γ. In the first step, cut the cube into smaller cubes of side length γ/2. Every K0
i will

intersect some of the smaller cubes. Call the union of the cubes that meet K0
i its support. Since

there are only finitely many such unions, there must be a subsequence (K1
i )i∈N of sets with the

same support. Now cut the cube C into cubes of side length γ/2m (for m ≥ 1) and repeat the
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argument to get a subsequence (Km
i )i∈N of (Km−1

i )i∈N of sets that all have the same (possibly
smaller) support. The Hausdorff distance of any Km

i and K`
j for m ≥ ` is bounded by the

length λ` of the long diagonal of the larger cubes (λ` = γ2−`
√
d), and is therefore decreasing

as ` increases. Using this, show that for the diagonal sequence Dm := Km
m we get

Dm
m→∞−−−→

⋂
`∈N0

(
D` + λ`−1B

d
)
,

using the fact that D` + λ`−1B
d is a decreasing sequence of nonempty compact sets.

End of class on July 10

The mixed volumes (continued)

From Proposition 3.32, we get for example for d = 2:

MV(P1, P2) = 1
2

(
vol2(P1 + P2)− vol2(P1)− vol2(P2)

)
.

This generalizes:

Proposition 3.47 (Mixed volumes in terms of volumes).

MV(P1, . . . , Pd) =
1

d!

∑
∅6=I⊆{1,...,d}

(−1)|I|vold(
∑
i∈I

Pi).

Proof. This is a simple property of homogeneous polynomials/inclusion-exclusion count.
(Consider f(λ1, . . . , λd) := vold(λ1P1 + · · · + λdPd), where substituting λi = 0 removes a
summand.)

Proposition 3.48 (Monotonicity of mixed volumes). For compact convex setsK ′1, K
′′
1 , K2, . . . , Kd

with K ′1 ⊆ K ′′1 ,
MV(K ′1, K2, . . . , Kd) ≤ MV(K ′′1 , K2, . . . , Kd)

where K ′1 ⊂ K ′′1 does not (!) imply strict inequality.

Proof. It suffices to prove this for polytopes (by approximation), and then it follows from the
fact that we can extend subdivisions/triangulations of Cayley polytopes.

The following example demonstrates how important and interesting mixed volumes are from a
completely different perspective, namely that of Complex Algebraic Geometry.

Example 3.49. Let f(x, y) = αx2 + βy + γ, g(x, y) = ax + bxy + cy + d be polynomials.
How many zeroes do we expect/get at most in the case that the coefficients α, β, γ, a, b, c, d are
generic/ there is only a finite number of solutions?

Definition 3.50 (Newton polytopes). For a complex polynomial f(z1, . . . , zd) =
∑

r crz
r, the

Newton polytope is the convex hull of all the exponent vectors, that is,

N(f) := conv{r ∈ Nd
0 : cr 6= 0}.
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Theorem 3.51 (Bernstein’s theorem). Let f1, . . . , fd ∈ C[z1, . . . , zd] be d complex polynomials
in d variables and let N(f1), . . . , N(fd) be the corresponding Newton polytopes. Assume that

N := |{(z1, . . . , zd) ∈ Cd : f1(z) = · · · = f(z) = 0, z1, . . . , zd 6= 0}|

is finite. ThenN ≤ d!MV(N(f1), . . . , N(fd)), and for generic choices of coefficients this bound
is tight.

(without proof)

Theorem 3.52 (Minkowski’s first inequality). Let K,L ⊂ Rd be convex bodies, then

MV(K[d− 1], L)d ≥ vold(K)d−1vold(L),

with equality if and only if K and L are homothetic.

One way to prove this is to assume that K = P and L = Q = PA(b′) be polytopes, and
to derive this from our proof for the Minkowski uniqueness and reconstruction theorem. (See
Sanyal Skript 2013.) We do a different proof instead.

Proof. The function

f(λ) := d
√

vold((1− λ)K + λL)− (1− λ) d
√

vold(K)− λ d
√

vold(L)

is defined for λ ∈ [0, 1], is satisfies f(0) = f(1) = 1, as well as f(λ) ≥ 0 by the Brunn–
Minkowski inequality, and it is differentiable as vold((1 − λ)K + λL) is a polynomial in λ,
namely

vold((1− λ)K + λL) =
∑

(r1,r2)∈N2
0(d)

d!

r1!r2!
MV(K[r1], L[r2])(1− λ)r1λr2

=
d∑
i=0

d!

(d− i)!i!
MV(K[d− i], L[i])(1− λ)d−iλi

=

(
d

d

)
MV(K[d])(1− λ)d +

(
d

d− 1

)
MV(K[d− 1], L)(1− λ)d−1λ+ . . .

= vold(K)(1− λ)d + dMV(K[d− 1], L)(1− λ)d−1λ+ . . .

Hence we get f ′(0) ≥ 0, which is

1

d
(vold(K))

1
d
−1[−d vold(K) + dMV(K[d− 1], L)] + d

√
vold(K)− d

√
vold(L) ≥ 0

and this yields the result.

End of class on July 15
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3.8 Isoperimetric problems

Recall

vold(λ1K1 + · · ·+ λnKn) =

=
n∑

i1=1

· · ·
n∑

id=1

MV(Ki1 [r1], . . . , Kin [rn])λi1 · · ·λid

=
∑

r∈Nn
0 (d)

(
d

r1!, . . . , rn!

)
MV(K1[r1], . . . , Kn[rn])λr11 · · ·λrnn .

for nonempty compact convex sets K1, . . . , Kn ⊆ Rd. This has lots of interesting specializa-
tions.

Definition 3.53 (Steiner polynomial). For any nonempty compact convex set K ⊂ Rd, the
Steiner polynomial of the outer parallel body Kε := K + εBd is

vold(Kε) = vold(K + εBd) =

=
d∑
i=0

(
d

i

)
MV(K[d− i], Bd[i])ε

i

=:
d∑
i=0

(
d

i

)
Wi(K)εi

where we now writeBd for the d-dimensional unit ball an whereWi(K) := MV(K[d−i], Bd[i])
are called the quermassintegrals or the mean projection measures of K.

In particular, we have W0(K) = vold(K), and use W1 to define (!) the surface measure.

Definition 3.54. The (d-dimensional) surface measure of a compact convex set K ⊂ Rd is
defined as

S(K) := dMV(K[d− 1], Bd) = dW1(K).

This can be made plausible from the Steiner decomposition of the parallel body Kε (compare
Problem 2 on Problem Set 10.) Note that

S(K) =
d

dε
vol(Kε) = lim

ε→0

vold(Kε)− vold(K)

ε
.

Proposition 3.55. If P ⊂ Rd is a d-polytope, then

S(P ) =
∑

F⊂P facet

vold−1(F ).

If P ⊂ Rd is a (d− 1)-polytope, then

S(P ) = 2vold−1(P ).

Proof. hBd
(ai) = 1.
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In the case when K is a polytope, we have a rather explicit computation of the mixed volume
MV(K, . . . ,K, L) not only for the case of a ball (where it yields the surface area), but for a
general convex body.

Proposition 3.56 (Mixed volumes and support function). Let P ⊂ Rd be a convex polytope
with facets F1, . . . , Fn and corresponding unit facet normals a1, . . . , an, and let L ⊂ Rd be a
nonempty closed convex set. Then

MV(P [d− 1], L) =
1

d

[
vold−1(F1)hL(a1) + · · ·+ vold−1(Fn)hL(an)

]
.

Proof. For the case when L is a polytope, this may be proven by constructing a suitable trian-
gulation of the Cayley polytope.
Indeed, this gets easier if we in addition assume that L has a unique maximum (attained at a
vertex) in each direction ai.
An alternative option is to assume that L is a strictly convex convex body. The “Steiner polyno-
mial” decomposition that we had discussed on a problem set, for the planar case and L = B2,
readily generalizes to this case.
The general case then follows via approximation.

The following is a major theorem — may be seen as solution to a classical problem from an-
tiquity, known as “Dido’s problem,” in much greater generality than originally posed. It was
first proved for d = 2 by the Swiss mathematician Jacob Steiner (1796–1863)1 using a method
now known as Steiner symmetrization. It shows that anything that is not a circle (ball) is not
a solution to the problem. Thus the existence of the optimum is not clear in this and similar
problems; it may be established by compactness, that is, the Blaschke selection theorem.

Theorem 3.57 (The isoperimetric inequality). Let K ⊂ Rd be a convex body, then

S(K)d

vold(K)d−1
≥ S(Bd)

d

vold(Bd)d−1

with equality if and only if K is homothetic to Bd, that is, if K is a ball.

Note that the quantity
S(K)d

vold(K)d−1
,

known as the isoperimetric quotient is invariant under homotheties — in particular, it is not
affected by scaling.

Proof. We use that S(K) = dMV(K[d− 1], Bd). Minkowski’s first inequality yields(S(K)

d

)d
= MV(K[d− 1], Bd)

d ≥ vold(K)d−1vold(Bd)

with equality only if K is homothetic to a ball. Together with S(Bd) = dvold(Bd) this yields

S(K)d

vold(K)d−1
≥ dd vold(K)d−1 vold(Bd)

vold(K)d−1
= dd vold(Bd) =

dd vold(Bd)
d

vold(Bd)d−1
=

S(Bd)
d

vold(Bd)d−1
.

1http://de.wikipedia.org/wiki/Jakob_Steiner
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The isoperimetric problem has many important applications (e.g. to functional analysis, graph
theory, number theory, etc.) Thus it also has many important variations. Here is one.

Theorem 3.58 (Lindelöf (1870)). Let A ∈ Rn×d be a matrix whose rows are distinct posi-
tively spanning unit vectors. Then PA(b) has minimal isoperimetric quotient if the polytope is
circumscribed to the unit ball (that is, for b the all ones vector).

Proof. Let P = PA(b) be circumscribed, and Q = PA(b′). We then have

vold(P ) =
1

d
S(P )

and Proposition 3.56 yields

MV(Q[d− 1], P ) =
1

d
S(Q).

Thus with Minkowski’s first inequality

S(Q)d

vold(Q)d−1
=
dd MV(Q[d− 1], P )d

vold(Q)d−1
≥ vold(Q)d−1 dd vold(P )

vold(Q)d−1
=

S(P )d

vold(P )d−1
.

But there is much more . . . As we have discussed Minkowski’s first inequality, there is also of
course a second one, which can be written as

MV(K[d− 1], L)2 ≥ MV(K[d− 2], L, L)MV(K[d])

but this is just a special case of the following major result, known as the Alexandrov–Fenchel
inequalities.

Theorem 3.59 (Alexandrov 1937/38, Fenchel 1936). Let K1, . . . , Kd be nonempty compact
convex sets, then

MV(K1, . . . , Kd−1, Kd)
2 ≥ MV(K1, . . . , Kd−1, Kd−1) ·MV(K1, . . . , Kd, Kd).

This is a major result. It in particular yields that the sequence

MV(K[i], L[d− i]), 0 ≤ i ≤ d

is logarithmically convex, so in particular it is unimodal. This yields/explains basically all
unimodality results in Mathematics. For example, by a result of Shephard all log-concave
sequences arise this way!
The AF inequalities are closely related to the Hodge index theorem in Algebraic Geometry.
See Gruber [4, p. 102] and Ewald [3] for more.
The equality case is not settled. There are things to do.

End of class on July 17
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