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This is the second in a series of three courses on Discrete Geometry. We will get to know fascinating
geometric structures such as configurations of points and lines, hyperplane arrangements, and in partic-
ular polytopes and polyhedra, and learn how to handle them using modern methods for computation and
visualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at
first sight (and some of it is), but it also very quickly touches topics of current research.

For students with an interest in discrete mathematics and geometry, this is the starting point to specialize
in discrete geometry. The topics addressed in the course supplement and deepen the understanding of
discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology,
and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some
knowledge of combinatorics and geometry is helpful.
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Discrete Geometry II — FU Berlin Summer Term 2014 — Lecture Notes, Version: May 27, 2014 — Günter M. Ziegler

0 Introduction

What’s the goal?

This is a second course in a large and interesting mathematical domain commonly known as
“Discrete Geometry”. This spans from very classical topics (such as regular polyhedra – see
Euclid’s Elements) to very current research topics (Discrete Geometry, Extremal Geometry,
Computational Geometry, Convex Geometry) that are also of great industrial importance (for
Computer Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in
such a way that

• you get an overview of the field of Discrete Geometry and its manifold connections,

• you learn to understand, analyze, visualize, and confidently/competently argue about the
basic structures of Discrete Geometry, which includes

– point configurations/hyperplane arrangements,
– frameworks
– subspace arrangements, and
– polytopes and polyhedra,

• you learn to know (and appreciate) the most important results in Discrete Geometry,
which includes both simple & basic as well as striking key results,

• you get to learn and practice important ideas and techniques from Discrete Geometry
(many of which are interesting also for other domains of Mathematics), and

• You learn about current research topics and problems treated in Discrete Geometry.

In this second course of the sequence, we will in particular treat the relationship between

• “discrete objects” (such as polytopes and polyhedra, but also lattices and lattice points)
and

• “general objects” (such as convex bodies)

in terms of various notions of diameter, volume, and roundness.
This will not only be interesting per se, but also lead us to some major theorems and insight
(e.g. on such fundamental notions as volume), but also to major applications (e.g. on sphere
packings, which is in turn important for coding theory).
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Discrete Geometry II — FU Berlin Summer Term 2014 — Lecture Notes, Version: May 27, 2014 — Günter M. Ziegler

1 Linear programming and some applications

1.1 On the diameter of polyhedra

Let’s consider a polyhedron of dimension d with n facets; let’s call it an (d, n)-polyhedron.
Careful: Want to look at pointed polyhedron, n ≥ d, which has a vertex, so the lineality space
is trivial.
The Hirsch conjecture from 1957 is the false (!) statement that the edge-graph of any (d, n)-
polyhedron has diameter at most n − d. This was disproved for unbounded polyhedra by Klee
& Walkup [3] in 1967 and in general by Santos [4] in 2012. The polynomial Hirsch conjecture
remains open: It might still be that the maximal diameter, ∆(d, n), satisfies ∆(d, n) ≤ d(n−d)
for all n ≥ d ≥ 1.
We will, nevertheless, see why from a “linear programming point of view” the bound n − d
looks natural, and even more so, why this is a relevant parameter.

Exercise 1.1. Show that ∆(2, n) ≤ n − 2 and ∆(3, n) ≤ n − 3, and that both inequalities are
sharp (that is, hold with equality for n ≥ 2 resp. n ≥ 3).

Up to recently, the best upper bound for the diameters of polyhedra was provided by Kalai &
Kleitman in a striking two page paper [2] in 1992:

∆(d, n) ≤ nlog(d)+2,

which was improved only slightly by Kalai [1] to

∆(d, n) ≤ nlog(d)+1,

where throughout “log” denotes the binary logarithm (i.e., base 2). However, just a few weeks
ago Mike Todd (Cornell University) in a 4-page paper [5] sharpened the Kalai–Kleitman anal-
ysis to obtain

∆(d, n) ≤ (n− d)log(d) = dlog(n−d),

which indeed is sharp for d = 1 and d = 2.
In class, we will go through the arguments of Todd [5] (and thus, in particular, the idea of Kalai
& Kleitman [2]).

[1] Gil Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming,
Ser. B, 79:217–233, 1997. Proc. Int. Symp. Mathematical Programming (Lausanne 1997).

[2] Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter of graphs of polyhedra.
Bulletin Amer. Math. Soc., 26:315–316, 1992.
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[3] Victor Klee and David W. Walkup. The d-step conjecture for polyhedra of dimension d < 6. Acta
Math., 117:53–78, 1967.

[4] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Math., 176:383–412, 2012.

[5] Michael J. Todd. An improved Kalai–Kleitman bound for the diameter of a polyhedron. Preprint,
April 2014, 4 pages, http://arxiv.org/abs/1402.3579.

End of class on April 15

1.2 Geometry of linear programming and pivot rules

1.2.1 Linear programming (Discrete Geometry version)

Any system Ax ≤ b with A ∈ Rn×d, b ∈ Rn defines a polyhedron P ⊆ Rd with dimP ≤ d and
#facets ≤ n.
Without loss of generality we may assume that rankA = d, that is the system Ax ≤ b has a
subsystem that defines an orthant, so in particular P is either pointed (has a vertex), or is empty.
Without loss of generality (theoretically, this may be harder to compute) we may assume that
dimP = d, so the polyhedron is full-dimensional. Moreover, we want to get our system into
the form

Ax ≤ b, −x ≤ 0

with b > 0 componentwise. For this we have to solve a “Phase I” problem that finds a vertex
x0 of the polyhedron, and then do a coordinate transformation that moves the vertex x0 to 0 and
transforms a system of inequalities that are tight at x0 to the positive orthant system x ≥ 0.
With a linear objective function we have a system of the form

max ctx

Ax ≤ b

x.

Example:

max y

x− y ≤ 2

−x+ y ≤ 1

x+ 2y ≤ 7

−x ≤ 0

y ≤ 0.

Geometric description of the polyhedron
• P is a full-dimensional polyhedron, with ≤ n facets, given inH-description-
• We have a linear objective function, which might be assumed to be the last coordinate xd,

to be maximized (or in other situations: minimized).
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• We assume that the polyhedron is simple, the system is in general position (this may be
achieved by perturbing the right-hand sides: Exercise!).
• Any d × d full rank subsystem A′x ≤ b′ defines a generalized orthant, which up to an

affine transformation is equivalent to the standard positive orthant “x ≥ 0.”
• Any generalized orthant defines a point (the unique solution of A′x = b′) and d rays (by

fixing all the d inequalities by one, and letting the slack in the last one get large).
• A generalized orthant is feasible if the point it defines by A′x = b′ is feasible (defines

all inequalities, not only those in the subsystem). Note that this does not depend on the
objective function.
• A generalized orthant is dual feasible if sliding along any of its rays does not improve the

objective function. Note that this does not depend on the right-hand side vector b.
• A generalized orthant is optimal if it is both feasible and dual feasible.
• Any optimal generalized orthant defines an optimal solution of the linear program.

. . . and what the primal simplex algorithm does on it:
• We assume that after preprocessing (known as “Phase I”) we have −x ≤ 0 as a feasible

generalized orthant, and in particular x0 = 0 as a feasible starting vertex.
• If the generalized orthant is dual feasible, DONE with optimal solution.
• Select an improving ray, and slide along the ray. (Along the ray one inequality of the

orthant is not tight any more; the objective function improves along the ray.)
• If the objective function improves without bound along the ray, DONE with optimal so-

lution.
• Otherwise along the way we hit a bound, that is, a new facet, whose inequality completes

a new feasible generalized orthant. REPEAT.
The process stops in finite time, since in every step we improve the objective function (no
cycles) and there are only finitely many orthants — not more than

(
n
d

)
. (A better bound is

obtained from the upper bound theorem — need a version for unbounded polyhedra: Exercise!)
End of class on April 17

Alternatively, here is what the dual simplex algorithm does on a linear program:
• We assume that after preprocessing (known as “Phase I”) we have found a dual feasible

generalized orthant, which in particular defines a current solution (vertex of the system,
but not necessarily of the polyhedron).
• If the generalized orthant is feasible, DONE with optimal solution.
• Select an inequality violated by the current solution.
• If the violating inequality hits none of the rays of the current generalized orthant, then

DONE with proof that the system is infasible.
• Otherwise construct a new dual feasible generalized orthant whose current solution gives

a better upper bound on the maximum of the system. REPEAT.
The process stops in finite time, if we take care that in every step we improve the current upper
bound on the objective function values on the polyhedron (no cycles) and there are only finitely
many generalized orthants.

End of class on April 22
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1.2.2 Linear programming (Numerical Linear Algebra version)

We write down two linear programs, in the following form.
The primal linear program is

(P ) max ctx

Ax ≤ b

x ≥ 0.

The associated dual linear program is

(D) min bty

Aty ≥ c

y ≥ 0.

Lemma 1.2 (Weak Duality Theorem). If for a primal-dual pair of linear programs x0 is a
feasible solution for the primal (P ) and y0 is a feasible solution for the dual (D), then

ctx0 ≤ bty0.

In particular, the maximum of (P ) is smaller or equals to the minimum of (D).

Proof. We compute
ctx0 ≤ (Aty0)

tx0 = yt0(Ax0) ≤ yt0b = bty0.

The linear programs are then, by introduction of slack variables, converted into systems of
linear equations, to be solved in non-negative variables.
Thus the primal linear program becomes

(P ) max ctx+ 0tx̂ = γ

Ax+ Inx̂ = b

x ≥ 0, x̂ ≥ 0

This system has an “obvious” current solution, given by x ≡ 0 (the “non-basic variables” are
set to 0: these correspond to the inequalities that define the current generalized orthant), x̂ = b
(the “basic variables” are uniquely determined). This starting solution has the value γ = 0.
These systems are manipulated by row operations, which do not change the solution space.
Thus after a number of steps we still have the system in the form

(P ) max c̄txN + 0txB = γ̄

ĀNxN + InxB = b̄

xN ≥ 0, xB ≥ 0

Here the columns have been resorted, to keep the “basic variables” and the “non-basic variables”
together, that is, the index setsB andN together give the set of all columns labelled byB∪N =

8



{1, 2, . . . , d+n}. The coefficients in the system are ĀN = A−1B AN , and b̄ = A−1B b. The objective
function has been rewritten in terms of the non-basic variables. Its coefficients

c̄tN = ctN − ctBA−1B AN

are known as the reduced costs: in the geometric interpretation they give the slopes of the rays
of the current generalized orthant.
The current solution is given by xN ≡ 0, which uniquely determines the non-basic variables to
be xB = b̄ = A−1B b.
Thus the (current solution of the) system is feasible if b̄ ≥ 0, and it is dual feasible if c̄N ≤ 0.
A similar treatment/computation can be done for the dual system (D).

Lemma 1.3. For any pair of primal linear program (P ) and its dual program (D) in the equa-
tion form given above,
• the bases B for the system (P ) are in bijection with the non-bases N of the system (D);
• the feasible bases for (P ) are in bijection with the dual-feasible non-bases for (D);
• etc.

Proof. This rests on the observation that in the (n+ d)× (n+ d) matrix(
A In
−Id At

)
the row space spanned by the first n rows is the orthogonal complement of the space spanned
by the last d rows.

Theorem 1.4 (Duality Theorem for Linear Programming). If a primal linear program (P ) and
its dual (D) are both feasible, then they have optimal solutions x∗ and y∗, and these have the
same optimal value.
If one of the programs is not feasible, then the other one is either infeasible as well, or it is
unbounded.

Proof. The optimal solutions exist, since the Simplex Algorithm will find it!

From the geometry of an optimal basis/optimal generalized orthant, we also get complementary
slackness: If in the optimal solution an inequality is not tight, then the corresponding variable in
the dual program is zero; if a variable is positive, then the corresponding dual inequality has to
be tight. This can also be seen from analysis of the inequalities in the proof of the Weak Duality
Theorem.
The optimal solution to a linear program can be computed efficiently:

In Practice there are commercial, as well as non-commercial, software libraries for linear pro-
gramming, which include implementations of the Primal Simplex Algorithm, the Dual
Simplex Algorithm, as well as other methods (such as Interior Point Methods) which will
solve to optimality practically every linear program that appears in practice.

In Theory there are two different computational models:

9



In the bit model the “Ellipsoid Method” (which will appear later in this course) is a
polynomial time method for solving linear programs, whose running time is poly-
nomial in the bit-size of the input. This method is theoretically very important, but
has not been implemented in practice.

In the unit cost model the Simplex Algorithm with a suitable choice of variable selec-
tions (“pivot rule”) may be polynomial — but this has not been proven. Indeed,
we do not even know whether in general there is any short (i.e. polynomially many
edges) path from a given starting vertex of the program to the optimal vertex. The
best upper bound is the nlog2 d upper bound discussed at the beginning of this course
— and this bound is not a polynomial in n and d. An upper bound of the type
d(n− d) might exist, but has not been proven.
Thus the complexity of Linear Programming, and in particular of the Simplex Algo-
rithm, is a major open problem both for Optimization, and for Discrete Geometry!

End of class on April 24

1.3 Further Notes on Linear Programming

Let’s step away from the simplex algorithm, and let’s look at the problem itsself — and let’s
assume we have a solution method (algorithm, perhaps software) that solves the problem, but
which we can treat as a “black box.” This is the oracle view, which has become popular in
optimization, with grave consequences for (computational) discrete and convex geometry: well-
defined input, well-defined output; estimate complexity
Examples:
LP-OPTIMIZATION problem/oracle:

INPUT: d ≥ 1, n ≥ 1, A ∈ Qn×d, b ∈ Qn, c ∈ Qd

TASK: max ctx : Ax ≤ b, x ≥ 0

OUTPUT: optimal solution x∗ ∈ Qd, with certificate (basis)
or information that problem is infeasible, with certificate (basis & inequality),
or information that problem is unbounded, with certificate (basis & ray).

LP-FEASIBILITY problem/algorithms/oracle:

INPUT: d ≥ 1, n ≥ 1, A ∈ Qn×d, b ∈ Qn

TASK: find x : Ax ≤ b, x ≥ 0

OUTPUT: feasible solution x∗ ∈ Qd, with certificate (basis)
or information that problem is infeasible, with certificate (basis & inequality).

Note: Any algorithm for solving LP-OPTIMIZATION can be used to solve LP-FEASIBILITY.
We will see that the other direction “works as well.”
Note: Two algorithms we know/could work out for LP-OPTIMIZATION: Fourier–Motzkin
elimination (see Discrete Geometry I), and the Simplex Algorithm.

10



1.3.1 Complexity issues

Could it be that the solution exists, but it is too large (or too small) to write down in reasonable
time?
Real input/solutions don’t make sense, or need work to make sense of.
Recommended reading: Lovász’ lecture notes [?].
Could get answer from Fourier–Motzkin elimination.
Here: get answer from simplex and Cramer’s rule and Hadamard inequality.

Lemma 1.5 (Hadamard inequality). LetA ∈ Rn×n be a matrix with columnsA = (A1, . . . , An).
Then

| detA| ≤ |A1| · · · |An|.
Lemma 1.6 (The Cramer’s rule estimate). Let A ∈ Zn×n, b ∈ Zn, detA 6= 0 (integer data!).
Then the (rational!) solution for the system of equations Ax = b satisfies

|xi| ≤ |A1| · · · |An|·|b|.
Proof. Cramer’s rule, together with the observation that the denominator, detA, is an integer,
so its absolute value is at least 1. The same is true for the length of each column |Ai|.

1.3.2 Feasibility

First, we should discuss the problem how to find a feasible generalized orthant for Ax ≤ b,
x ≥ 0, in order to even start the simplex algorithm. Here are two solutions to that problem:

• Use the complexity estimates to get explicit upper bounds for the variables, and thus have
a starting basis for the dual simplex algorithm (that is, a feasible basis for the simplex
algorithm applied to the dual program).

• Phase I: Write down an artificial OPTIMIZATION program, which is feasible, and whose
optimal solution (basis) will give a feasible solution (and a feasible basis!) for the FEA-
SIBILITY problem: For example

minx0 : Ax− x01 ≤ b, x ≥ 0, x0 ≥ 0.

It is trivial that if we can solve LP-OPTIMIZATION then we can solve LP-FEASIBILITY,
in a way that is completely independent of the the specific algorithm used to “implement”
LP-OPTIMIZATION; that is, we can use any LP-OPTIMIZATION oracle to “simulate” an
LP-FEASIBILITY algorithm; in other words, we can program a (fast) algorithm for
LP-FEASIBILITY if we can use a (fast) subroutine for LP-OPTIMIZATION (e.g. by putting
objective function zero).
However, note that the converse is also true: If we know how to solve LP-FEASIBILITY, then
we can also solve LP-OPTIMIZATION, that is,
LP-FEASIBILITY =⇒ LP-OPTIMIZATION.
For this, note that any feasible solution (x, y) for the primal-dual program

ctx ≥ bty

(PD) Ax ≤ b Aty ≥ c

x ≥ 0 y ≥ 0

11



1.3.3 Modelling issues

Conversion of programs from equality form to inequality form, and conversely. See the Exer-
cises.

1.3.4 Perturbation techniques

If we replace the right-hand sides bi by bi + εi, for a suitably small ε, then
• the perturbed problem will be feasible if and only if the original problem is feasible,
• the perturbed problem will be primally non-degenerate, that is, it describes a simple poly-

hedron, and at any generalized orthant (basis), no extra inequalities are tight (that is, the
non-basic variables are non-zero).

(see Exercise).
Moreover,
• similarly, by perturbing the objective function the program can be made dually non-

degenerate, so that in particular the optimal solution is unique (if it exists), and
• the suitable ε > 0 can be estimated explicitly.

1.3.5 Integral solutions? An example

In general, the optimal solutions will not be integral, although many applications ask for integral
solutions. Even if we find the best integral solution, this will come without a certificate, as there
may be not dual constraints that are tight at the best integer solution.
However, in many combinatorial situations, we are lucky. Here is one example.

Example 1.7 (Network flows). If the bounds on each arc are integral, then the optimal solution
will be integral.
(This may be seen from an algorithm by successive improvement, or from a matrix argument,
see exercise.)
Interpretation of dual solutions: Max cut!
Max-Flow-Min-Cut theorem!

Exercise 1.8. Let A ∈ {0, 1,−1}n×n be a 0/± 1 matrix. Show that
(i) The determinant of a 0/1-matrix A can be large, even if there are only two 1s per row.

(ii) The determinant of A is not large if there is at most one 1 and at most one −1 per row.
(iii) Use the Hadamard inequality to give an upper bound on | detA|
(iv) For A ∈ {0, 1}n×n give a much better upper bound, by

— Multiplying the matrix by 2,
— Adding a column of 0’s and then a row of 1’s,
— subtracting the first row from all others
and then applying Hadamard to the resulting ±1-matrix.

(v) Give examples where this bound is tight.

End of class on April 29
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2 Convex Bodies, Volumes, and Roundness

“Although convexity is a simple property to formulate, convex bodies possess a
surprisingly rich structure” (Keith Ball [?])

Archimedes book “On the sphere and the cylinder”

2.1 Some basic definitions and examples

Definition 2.1 (Linear/affine/conical/convex hulls). Define in Rn:
• Linear subspace, linear hull
• Affine subspace (possibly empty), affine hull
• Conical subspace (= convex cone, or simply cone), conical hull
• Convex hull, convex set

Definition 2.2 (Convex set, line-free, bounded, convex body). Define in Rn: A convex set is
• line free: does not contain an affine line
• bounded: does not contain a ray
• convex body: a closed, bounded (that is, compact) full-dimensional convex set
• strictly convex: if λx+ (1− λ)y ∈ intC for 0 < λ < 1 and x 6= y.

Examples:
• linear and affine subspaces
• convex polygons in the plane
• regular polyhedra in 3-space

Example 2.3. The unit ball of Rd with `2 norm is a centrally-symmetric proper convex body.
Indeed, convexity follows from the triangle inequality

Thus the “theory of finite-dimensional Banach spaces” is equivalent to the “theory of centrally-
symmetric convex bodies.”
For example, Dvoretzky’s theorem, which says that every centrally symmetric convex body in
Rn has a central section of dimension roughly log n that is linearly approximately equivalent
to some Rd with the Euclidean norm, is a theorem about centrally symmetric convex bodies,
which have sections that are roughly ellipsoids. (Indeed, concentration of measure implies that
a random subspace will do . . . )

End of class on May 6

Example 2.4. The set PSDn of positive semi-definite (n× n)-matrices is a closed convex cone
in Rn×n of dimension

(
n+1
2

)
.

Example 2.5. If identify the N -dimensional vector space R[x1, . . . , xd]≤2k of real polynomials
in d variables of degree less than 2k with RN . Then the set

Pd,2k = {p : p ∈ R[x1, . . . , xd]≤2k and p(x) ≥ 0 for all x ∈ Rd}

of positive polynomials is a closed, unbounded convex cone in RN . Similarly the set

Σd,2k = {p : ∃h1, . . . , hn ∈ R[x1, . . . , xd]≤k such that p(x) = h21(x) + . . . h2n(x)}

of sums of squares (SOS) is a closed, unbounded convex cone in RN .
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Exercise: The dimension of the vector space R[x1, . . . , xd]≤2k is
(
2k+d
d

)
.

Theorem 2.6 (Gauß–Lucas Theorem). Let p ∈ C[z] be a complex polynomial in one variable
with roots r1, . . . , rd, then the roots of the derivative p′ of p are contained in the convex hull
conv{r1, . . . , rd}.

Proof. If r1 is a zero of p as well as of p′, then r1 = 1r1+0r2+· · ·+0rd is a convex combination.
Assume z is a zero of p′ but not of p. Write p and p′ in terms of their roots (they factor over C)
and look at p(z)

p′(z)
to get a convex combination of the ri.

If p has only real roots, then the above result is a consequence of the Rolle’s theorem (or the
mean value theorem).

2.2 Topological properties

Theorem 2.7 (Carathéodory). Let A ⊆ Rd be a set and x ∈ conv(A) a point in the convex hull
of A. Then there are d+ 1 points p1, . . . , pd+1 in A such that x ∈ conv{p1, . . . , pd+1}.

Proof. Write x ∈ conv(A) as convex combination of a minimal number of points p1, . . . , pn ∈
A. If n is more than d + 1, then there is an affine dependency, where one of the coefficients
is positive. Subtract a multiple of this dependency to kill one of the coefficients of the convex
combination.

Corollary 2.8. If A ⊂ Rd is compact, then so is conv(A).

Proof. Let ∆d = conv{e1, . . . , ed+1} be the standard d-simplex in Rd+1. Consider a map from
Ad+1 × ∆d → A given by (p1, . . . , pd+1, λ) 7→

∑
λipi. Clearly its image is contained in

conv(A). The converse is true by Carathéodory’s theorem. Hence conv(A) is the image of a
compact set under a continuous map.

End of class on May 8

Definition 2.9 (interior points, interior, boundary points, boundary).

Definition 2.10 (relative interior, relative boundary).

Proposition 2.11. If K is convex, then relintK is also convex.

Lemma 2.12. If x0, . . . , xk are affinely independent, P := conv{x0, . . . , xk}, then x ∈ relintP
if and only if x = λ0x0 + · · ·+ λkxk with all λi > 0.

Corollary 2.13. K convex, not empty, then relintK 6= ∅.
Definition 2.14 (dimension of a convex set).

Theorem 2.15 (Carathéodory’s Theorem — ambient space free version).

Corollary 2.16. Characterization of relative interior of a polytope P := conv{x0, . . . , xn}:
x = λ0x0 + · · ·+ λkxk with all λi > 0.

Definition 2.17 (extreme points).

Theorem 2.18 (Minkowski). K closed and bounded convex set, then K = conv(extK).

End of class on May 13
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2.3 Support and separation

Definition 2.19 (Nearest point map). Let A ⊂ Rd be a non-empty closed convex set. Then the
nearest-point map of A is the map πA : Rd → A which assigns to each x ∈ Rd the point on A
with the smallest (Euclidean) distance from x.

Proposition 2.20. The map πA of “Definition” 2.19 exists (that is, the nearest point exists, lies
in A, and is unique) and the map is contractive:

‖πA(x)− πA(y)‖ ≤ ‖x− y‖

and thus in particular continuous.

Exercise 2.21. There is a converse: If for a closed set A the nearest point πA(x) is unique for
all x, then A is convex.

Notation: H hyperplane, H+, H− half spaces: They are closed convex sets, their interiors are
inter(H+) = Rd \H− and inter(H−) = Rd \H+, their boundary is ∂H+ = ∂H− = H .

Definition 2.22 (separates). If A ⊆ Rd is a convex set and p ∈ Rn, then a hyperplane H
separates p from A if p ∈ H+ and A ⊆ inter(H−), that is, A ∩ H+ = ∅. The hyperplane H
strictly separates A and p if A ⊆ inter(H−) and p ∈ inter(H+).
If A,B ⊆ Rd are convex sets, then a hyperplane H separates B from A if B ⊂ H+ and
A ⊆ inter(H−). The hyperplane H strictly separates A and B if A ⊆ inter(H−) and B ⊆
inter(H+).

Note that if separation implies that the sets are disjoint, and strict separation implies weak
separation. However, separation is not symmetric: There may be a hyperplane that separates B
from A, but none that separates A from B.

Theorem 2.23 (Separation Theorem). LetA ⊆ Rd be a non-empty closed convex set and p /∈ A,
then there is a hyperplane that strictly separates p and A.

Proof. Set q := πA(p), c := p − q, H := {x ∈ Rd : ctx = ctq} and H1/2 := {x ∈ Rd : ctx =
ctq}.
An elementary geometric argument shows that A ⊂ H−, while p /∈ H−, such that H separates
p from A with q ∈ H , and H1/2strictly separates p and A.

Definition 2.24 (supporting hyperplane). A supporting hyperplane H for a convex set A satis-
fies A ⊆ H− and A ∩H 6= ∅.

. . . so this exists by the (proof of the) Separation Theorem.

Corollary 2.25. closed convex set is intersection of half spaces given by supporting hyperplanes

Corollary 2.26. IfA is a convex body, then for each direction c 6= 0 there is a unique supporting
hyperplane H = {x : ctx = δ}.

Definition 2.27 (support function). Convex body A, define hA : Rd → R by hA(c) :=
max{ctx : x ∈ A}.
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Corollary 2.28. Convex body is determined by its support function.

Definition 2.29 (Minkowski sum). The Minkowski sum of two sets A,B ⊆ Rd is

A+B := {x+ y : x ∈ A, y ∈ B}.

Lemma 2.30. If A and B are convex, then so is A+B = B + A.

Lemma 2.31. K,L,M convex bodies. Then
(i) hK+L = hK + hL.

(ii) K +M = L+M implies K = L.

Remark 2.32. We have just established that the set of convex bodies Kd is a cancellative com-
mutative monoid.

End of class on May 15

Theorem 2.33 (Supporting Hyperplane Theorem). Let A ⊂ Rd be a closed and convex set.
Then for every point p in the (relative) boundary ∂A of A there is a supporting hyperplane
HA(p) for A at p, that is, A ⊆ H−A (p) and p ∈ H ∩ A.

Proof. If A is not full-dimensional, replace the ambient space by an affine subspace of dimen-
sion dim(A). A supporting hyperlane in this subspace lies inside some (actually many) hyper-
planes in Rd, all of which are supporting. So assume A is full-dimensional. Via the nearest
point map πA we get a supporting hyperplane for A at each point π(y) for y ∈ Rd \A with unit
normal vector y−πA(y)

‖y−πA(y)‖2 . Take a series (yn) ⊂ Rd \ A that converges to p. The corresponding

sequence of unit normal vectors un := yn−πA(yn)
‖yn−πA(yn)‖2 for the supporting hyperplanes at πA(yn)

has, by compactness of the unit sphere, a subsequence converging to u ∈ Sd−1. There is a cor-
responding subsequence of (yn) that also converges to p. Using convergence of the sequences
and continuity of the inner product argue that HA(p) := {x ∈ Rd : utx = utp} is a supporting
for A at p.

Proof of Minkowski’s Theorem 2.18. The inclusion K ⊇ conv(extK) is trivial. For the other
inclusion argue by induction on d = dim(C). The cases d = 0, 1 are trivial. Assume the theo-
rem holds for all compact and convex sets of dimension less than d. Assume K has dimension
d. Let p ∈ ∂K. Then, by Theorem 2.33 above, there is a supporting hyperplane HK(p) for
K at p. The “face” F := K ∩ HK(p) is of lower dimension and hence p ∈ conv(extF ). By
the homework assignment extF ⊆ extK and hence p ∈ conv(extK). If p ∈ relint(K) take
a line through p that intersects ∂A in two points. Argue using faces that these points are in
conv(extK), so p must be in conv(K) as well.

2.4 Spectrahedra

Definition 2.34. A spectrahedron S is the intersection of the cone PSDn of symmetric positive-
semidefinite matrices with a d-dimensional affine subspace V (of the space of symmetric n× n
matrices). If A is positive semi-definite we write A � 0.
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Proposition 2.35. A spectrahedron S is convex and closed. It can be written as

S = {(x1, . . . , xd) ∈ Rd : A0 + x1A1 + . . . xdAd � 0},

for suitable symmetric matrices A0, . . . , Ad of size n × n. Let A(x) := A0 + x1A1 + . . . xdAd
denote the (symmetric) matrix valued function from Rd → Rn×n.

Example 2.36. The cylinder

C := {(x, y, z) ∈ R3 : x2 + y2 ≤ 1,−1 ≤ z ≤ 1}

is a spectrahedron. Consider the points (x, y, z) ∈ R3 such that the sum

A0 + xA1 + yA2 + zA3 =


1 + x y 0 0
y 1− x 0 0
0 0 1 + z 0
0 0 0 1− z

 � 0.

Here A0 is the identity matrix. A1 has a 1 in position (1, 1) and a −1 at (2, 2) and other-
wise zeros. A2 is zero except for 1s at (1, 2) and (2, 1). Finally, A3 is zero except for a 1 at
(3, 3) and a −1 at (4, 4). It turns out that C is the set of all points w = (x, y, z) that satisfy
A(w) � 0. The cylinder C can also be viewed as the intersection of PSD4 with the affine
subspace A0 + span{A1, A2, A3}.

Proposition 2.37. Any polyhedron P is a spectrahedron.

Proof commented, since it is a current exercise.

Example 2.38. Any univariate sum of squares (SOS) polynomial p ∈ R[t] of degree 2n that can
be written as

p = (1, t, t2, . . . , tn)t

1 0 a
0 1− 2a 0
a 0 1

 (1, t, t2, . . . , tn)

defines a spectrahedron S, where S is given by all a such that the matrix is positive semi-
definite. Actually S = [−1, 1/2]. This extends to polynomials of higher degree that can be
written as ttA t for positive semi-definite A.

Example 2.39 (Non-example). Consider the (linear) projection of the cylinder C into the plane
given by x + 2z = 0. What we get is the convex hull C ′ of two non-intersecting ellipses in the
plane. Recalling that a matrix is positive semidefinite if the determinants of all of its diagonal
minors are non-negative, we can conclude that any spectrahedron must be a so-called basic
semialgebraic set, that is, a set of points satisfying finitely many polynomial inequalities where
the polynomials are of finite degree. Using the fact that infinitely many points determine a
polynomial of finite degree one can argue that C ′ is not basic semialgebraic, hence implying
that C ′ is not a spectrahedron.

End of class on May 20 + May 22

17



2.5 Löwner–John ellipsoids and roundness

Definition 2.40. An ellipsoid E ⊆ Rd is the image f(Bd) of the unit ball under an invertible
affine transformation f : Rd → Rd.

If the transformation is f : x 7→ Ax+ c, then

f(Bd) = {x ∈ Rd : 〈A−1(x− c), A−1(x− c)〉 ≤ 1}
= {x ∈ Rd : 〈Q(x− c), x− c〉 ≤ 1}

for Q = A∗A−1 = (AAt)−1 positive-definite.

Lemma 2.41. The volume of E is | detA|volBd = volBd
√
detQ

.

Exercise 2.42. If E = {x ∈ Rd : 〈Qx, x〉 ≤ 1}, show that the polar is E∗ = {x ∈ Rd :
〈Q−1x, x〉 ≤ 1}. Deduce that (volE)(volE∗) = (volBd)2.

Exercise 2.43. If g : Rd → Rd is a surjective linear map, and E ⊂ Rd is an ellipsoid, then g(E)
is an ellipsoid in Rk.

Lemma 2.44. Every ellipsoid E ⊂ Rd can be written in the form E = S(Bd) + c, where S is a
positive-definite (symmetric) matrix.

Proof. Use the (left) polar decomposition: every invertible A can be written as A = P ′U ,
where U = A

√
AtA

−1
is a unitary matrix, and P ′ = AU−1 =

√
AAt is positive-definite. Then

A(Bd) = S(Bd).

Lemma 2.45. If X, Y are positive-definite (symmetric square) matrices, then

det
(X + Y

2

)
≥
√

det(X) det(Y ),

with equality if and only X = Y .

Proof. We can write X = U tD2U for unitary U and non-negative diagonal D, and with this
Y = U tDY ′DU . With this we obtain that without loss of generality X = Id.
Furthermore, the resulting Y ′ can be diagonalized, and without loss of generality Y is diag-
onal. Then things reduce to simple inequalities of the form 1+λi

2
≥
√
λi for certain positive

eigenvalues λi.

Theorem 2.46 (Löwner–John). If K ⊂ Rd is a convex body, then the maximum-volume ellip-
soid E ⊆ K exists and is unique.

Proof. For the existence, consider the set

X := {(S, c) : S positive semidefinite, c ∈ Rd, S(Bd) + c ⊆ K}.

By Lemma 2.44, every ellipsoid in K is represented by a pair (S, c) in X . As K is bounded, we
get that X is bounded. It is also closed, so it is compact. Moreover, the volume function on X ,
given by det(S)vol(Bd), is continuous, so the maximum exists.
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To show that it is unique, first note that from any two ellipsoids of the same maximum volume
E1 = S1(B

d) + c1 and E2 = S2(B
d) + c2 we can construct a new one 1

2
(E1 + E2) given by

S := 1
2
(S1 +S2) and c := c1 +c2. Lemma 2.45 now yields that if both E1 and E2 have maximal

volume, then S1 = S2.
To see c1 = c2, we may now after a coordinate transformation assume that S1 = S2 = I is a
unit ball. So we just have to show that the convex hull of the union of two distinct unit balls
contains an ellipsoid of larger volume.

Theorem 2.47. The minimal volume ellipsoid that contains a given convex body K is also
unique.

Theorem 2.48. Let K ⊂ Rd be a convex body and let E ⊆ K be the maximal volume ellipsoid
in K, where we assume that its center is the origin 0. Then

E ⊆ K ⊂ dE.

Proof. Elementary calculation.

Theorem 2.49. Let K = −K ⊂ Rd be a centrally-symmetric convex body and let E ⊆ K be
the maximal volume ellipsoid in K. Then

E ⊆ K ⊂
√
dE.

Proof. Elementary calculation.

End of class on May 27
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