Discrete Geometry II

- Preliminary Lecture Notes (without any guarantees) -

Prof. Günter M. Ziegler

Fachbereich Mathematik und Informatik, FU Rerlin, 14195 Berlin ziegler@math.fu-berlin.de

FU Berlin, Summer Term 2014

This is the second in a series of three courses on Discrete Geometry. We will get to know fascinating geometric structures such as configurations of points and lines, hyperplane arrangements, and in particular polytopes and polyhedra, and learn how to handle them using modern methods for computation and visualization and current analysis and proof techniques. A lot of this looks quite simple and concrete at first sight (and some of it is), but it also very quickly touches topics of current research.
For students with an interest in discrete mathematics and geometry, this is the starting point to specialize in discrete geometry. The topics addressed in the course supplement and deepen the understanding of discrete-geometric structures appearing in differential geometry, optimization, combinatorics, topology, and algebraic geometry. To follow the course, a solid background in linear algebra is necessary. Some knowledge of combinatorics and geometry is helpful.

Basic Literature

[1] Peter M. Gruber. Convex and Discrete Geometry, volume 336 of Grundlehren Series. Springer, 2007.
[2] Peter M. Gruber and Jörg Wills, editors. Handbook of Convex Geometry. North-Holland, Amsterdam, 1993. 2 Volumes.
[3] Branko Grünbaum. Convex Polytopes, volume 221 of Graduate Texts in Math. Springer-Verlag, New York, 2003. Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler (original edition: Interscience, London 1967).
[4] Jiří Matoušek and Bernd Gärtner. Understanding and Using Linear Programming. Universitext. Springer, 2007.
[5] Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1995. Revised edition, 1998; seventh updated printing 2007.

Contents

0 Introduction 4
1 Linear programming and some applications 5
1.1 On the diameter of polyhedra 5
1.2 Geometry of linear programming and pivot rules 5
1.2.1 Linear programming (Discrete Geometry version) 5
1.2.2 Linear programming (Numerical Linear Algebra version) 7
1.3 Further Notes on Linear Programming 9
1.3.1 Complexity issues 10
1.3.2 Feasibility 10
1.3.3 Modelling issues 11
1.3.4 Perturbation techniques 11
1.3.5 Integral solutions? An example 12
2 Convex Bodies, Volumes, and Roundness 13
2.1 Some basic definitions and examples 13
2.2 Topological properties 14
2.3 Support and separation 15
2.4 Spectrahedra 16
2.5 Löwner-John ellipsoids and roundness 18
2.6 Volume computation and ellipsoids 19
2.7 The Ellipsoid method 20
2.8 Polarity, and the Mahler conjecture 21
3 Geometric inequalities, mixed volumes, and isoperimetric problems 23
3.1 Introduction: Arithmetic inequalities 23
3.2 Brunn's Slice Inequality and the Brunn-Minkowski Theorem 24
3.3 Minkowski's existence and uniqueness theorem 26
3.4 Application: Sorting partially ordered sets 28
3.5 Mixed subdivisions and Mixed volumes 31
3.6 The mixed volumes 34
3.7 The space of convex bodies 36
3.8 The isoperimetric problem 37
3.9 Measure concentration and phenomena in high-dimensions 37
A rough schedule, which we will adapt as we move along:

1. 2. Linear programming 1.1 On the diameter of polyhedra April 15
1. 1.2 Linear programming (Discrete geometry version) April 17
2. ... and dual simplex algorithm April 22
3. 1.2.2 (Linear algebra version), LP duality April 24
4. 1.3 Further notes on linear programming April 29
5. 2. Convex bodies, volumes, and roundness 2.1 Basics May 6
1. ... and examples. 2.2 Topological properties: boundary, interior (?/BMS) May 8
2. (cont.d) May 13
3. 2.3 Support and separation May 15
4. and Minkowski's theorem (?/NYC) May 20
5. 2.4 Spectrahedra May 22
6. 2.5 Löwner-John ellipsoids and roundness May 27
7. 2.6 Approximation of convex bodies by polytopes May 29
8. 2.7 On the difficulty of volume computation June 3
9. 2.8 Polarity and the Mahler conjecture June 5
10. 2.9 Volume, mixed volumes, and valuations June 10
11. 2.10 Geometric inequalities: Brunn-Minkowski and Alexandrov-Fenchel June 12
12. and applications June 17
13. 2.11 Isoperimetric inequalities June 19
14. 2.12 Measure concentration and high-dimensional effects June 24
15. 3. Geometry of Numbers 3.1 Lattices and lattice points June 26
1. 3.2 Minkowski's (first) theorem July 1
2. 3.3 Successive minima July 3
3. 3.4 Lattice points in convex bodies July 8
4. (?/SA) July 10
5. July 15
6. July 17

0 Introduction

What's the goal?

This is a second course in a large and interesting mathematical domain commonly known as "Discrete Geometry". This spans from very classical topics (such as regular polyhedra - see Euclid's Elements) to very current research topics (Discrete Geometry, Extremal Geometry, Computational Geometry, Convex Geometry) that are also of great industrial importance (for Computer Graphics, Visualization, Molecular Modelling, and many other topics).
My goal will be to develop these topics in a three-semester sequence of Graduate Courses in such a way that

- you get an overview of the field of Discrete Geometry and its manifold connections,
- you learn to understand, analyze, visualize, and confidently/competently argue about the basic structures of Discrete Geometry, which includes
- point configurations/hyperplane arrangements,
- frameworks
- subspace arrangements, and
- polytopes and polyhedra,
- you learn to know (and appreciate) the most important results in Discrete Geometry, which includes both simple \& basic as well as striking key results,
- you get to learn and practice important ideas and techniques from Discrete Geometry (many of which are interesting also for other domains of Mathematics), and
- You learn about current research topics and problems treated in Discrete Geometry.

In this second course of the sequence, we will in particular treat the relationship between

- "discrete objects" (such as polytopes and polyhedra, but also lattices and lattice points) and
- "general objects" (such as convex bodies)
in terms of various notions of diameter, volume, and roundness.
This will not only be interesting per se, but also lead us to some major theorems and insight (e.g. on such fundamental notions as volume), but also to major applications (e.g. on sphere packings, which is in turn important for coding theory).

1 Linear programming and some applications

1.1 On the diameter of polyhedra

Let's consider a polyhedron of dimension d with n facets; let's call it an (d, n)-polyhedron.
Careful: Want to look at pointed polyhedron, $n \geq d$, which has a vertex, so the lineality space is trivial.
The Hirsch conjecture from 1957 is the false (!) statement that the edge-graph of any (d, n) polyhedron has diameter at most $n-d$. This was disproved for unbounded polyhedra by Klee \& Walkup [3] in 1967 and in general by Santos [5] in 2012. The polynomial Hirsch conjecture remains open: It might still be that the maximal diameter, $\Delta(d, n)$, satisfies $\Delta(d, n) \leq d(n-d)$ for all $n \geq d \geq 1$.
We will, nevertheless, see why from a "linear programming point of view" the bound $n-d$ looks natural, and even more so, why this is a relevant parameter.

Exercise 1.1. Show that $\Delta(2, n) \leq n-2$ and $\Delta(3, n) \leq n-3$, and that both inequalities are sharp (that is, hold with equality for $n \geq 2$ resp. $n \geq 3$).

Up to recently, the best upper bound for the diameters of polyhedra was provided by Kalai \& Kleitman in a striking two page paper [2] in 1992:

$$
\Delta(d, n) \leq n^{\log (d)+2}
$$

which was improved only slightly by Kalai [1] to

$$
\Delta(d, n) \leq n^{\log (d)+1}
$$

where throughout "log" denotes the binary logarithm (i.e., base 2). However, just a few weeks ago Mike Todd (Cornell University) in a 4-page paper [6] sharpened the Kalai-Kleitman analysis to obtain

$$
\Delta(d, n) \leq(n-d)^{\log (d)}=d^{\log (n-d)}
$$

which indeed is sharp for $d=1$ and $d=2$.
In class, we will go through the arguments of Todd [6] (and thus, in particular, the idea of Kalai \& Kleitman [2]).

1.2 Geometry of linear programming and pivot rules

1.2.1 Linear programming (Discrete Geometry version)

Any system $A x \leq b$ with $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^{n}$ defines a polyhedron $P \subseteq \mathbb{R}^{d}$ with $\operatorname{dim} P \leq d$ and $\#$ facets $\leq n$.

Without loss of generality we may assume that $\operatorname{rank} A=d$, that is the system $A x \leq b$ has a subsystem that defines an orthant, so in particular P is either pointed (has a vertex), or is empty. Without loss of generality (theoretically, this may be harder to compute) we may assume that $\operatorname{dim} P=d$, so the polyhedron is full-dimensional. Moreover, we want to get our system into the form

$$
A x \leq b,-x \leq 0
$$

with $b>0$ componentwise. For this we have to solve a "Phase I" problem that finds a vertex x_{0} of the polyhedron, and then do a coordinate transformation that moves the vertex x_{0} to 0 and transforms a system of inequalities that are tight at x_{0} to the positive orthant system $x \geq 0$.
With a linear objective function we have a system of the form

$$
\begin{aligned}
& \max c^{t} x \\
& A x \leq b \\
& x
\end{aligned}
$$

Example:

$$
\begin{aligned}
\max y & \\
x-y & \leq 2 \\
-x+y & \leq 1 \\
x+2 y & \leq 7 \\
-x & \leq 0 \\
y & \leq 0 .
\end{aligned}
$$

Geometric description of the polyhedron

- P is a full-dimensional polyhedron, with $\leq n$ facets, given in \mathcal{H}-description-
- We have a linear objective function, which might be assumed to be the last coordinate x_{d}, to be maximized (or in other situations: minimized).
- We assume that the polyhedron is simple, the system is in general position (this may be achieved by perturbing the right-hand sides: Exercise!).
- Any $d \times d$ full rank subsystem $A^{\prime} x \leq b^{\prime}$ defines a generalized orthant, which up to an affine transformation is equivalent to the standard positive orthant " $x \geq 0$."
- Any generalized orthant defines a point (the unique solution of $A^{\prime} x=b^{\prime}$) and d rays (by fixing all the d inequalities by one, and letting the slack in the last one get large).
- A generalized orthant is feasible if the point it defines by $A^{\prime} x=b^{\prime}$ is feasible (defines all inequalities, not only those in the subsystem). Note that this does not depend on the objective function.
- A generalized orthant is dual feasible if sliding along any of its rays does not improve the objective function. Note that this does not depend on the right-hand side vector b.
- A generalized orthant is optimal if it is both feasible and dual feasible.
- Any optimal generalized orthant defines an optimal solution of the linear program.
\ldots and what the primal simplex algorithm does on it:
- We assume that after preprocessing (known as "Phase I") we have $-x \leq 0$ as a feasible generalized orthant, and in particular $x_{0}=0$ as a feasible starting vertex.
- If the generalized orthant is dual feasible, DONE with optimal solution.
- Select an improving ray, and slide along the ray. (Along the ray one inequality of the orthant is not tight any more; the objective function improves along the ray.)
- If the objective function improves without bound along the ray, DONE with optimal solution.
- Otherwise along the way we hit a bound, that is, a new facet, whose inequality completes a new feasible generalized orthant. REPEAT.
The process stops in finite time, since in every step we improve the objective function (no cycles) and there are only finitely many orthants - not more than $\binom{n}{d}$. (A better bound is obtained from the upper bound theorem - need a version for unbounded polyhedra: Exercise!)

Alternatively, here is what the dual simplex algorithm does on a linear program:

- We assume that after preprocessing (known as "Phase I") we have found a dual feasible generalized orthant, which in particular defines a current solution (vertex of the system, but not necessarily of the polyhedron).
- If the generalized orthant is feasible, DONE with optimal solution.
- Select an inequality violated by the current solution.
- If the violating inequality hits none of the rays of the current generalized orthant, then DONE with proof that the system is infasible.
- Otherwise construct a new dual feasible generalized orthant whose current solution gives a better upper bound on the maximum of the system. REPEAT.
The process stops in finite time, if we take care that in every step we improve the current upper bound on the objective function values on the polyhedron (no cycles) and there are only finitely many generalized orthants.

1.2.2 Linear programming (Numerical Linear Algebra version)

We write down two linear programs, in the following form.
The primal linear program is

$$
\text { (P) } \quad \begin{aligned}
\max c^{t} x & \\
A x & \leq b \\
x & \geq 0 .
\end{aligned}
$$

The associated dual linear program is

$$
\begin{aligned}
(D) \quad \min b^{t} y & \\
A^{t} y & \geq c \\
y & \geq 0 .
\end{aligned}
$$

Lemma 1.2 (Weak Duality Theorem). If for a primal-dual pair of linear programs x_{0} is a feasible solution for the primal (P) and y_{0} is a feasible solution for the dual (D), then

$$
c^{t} x_{0} \leq b^{t} y_{0} .
$$

In particular, the maximum of (P) is smaller or equals to the minimum of (D).

Proof. We compute

$$
c^{t} x_{0} \leq\left(A^{t} y_{0}\right)^{t} x_{0}=y_{0}^{t}\left(A x_{0}\right) \leq y_{0}^{t} b=b^{t} y_{0} .
$$

The linear programs are then, by introduction of slack variables, converted into systems of linear equations, to be solved in non-negative variables.
Thus the primal linear program becomes

$$
\begin{aligned}
(P) \quad \max c^{t} x+0^{t} \hat{x} & =\gamma \\
A x+I_{n} \hat{x} & =b \\
x \geq 0, \hat{x} \geq 0 &
\end{aligned}
$$

This system has an "obvious" current solution, given by $x \equiv 0$ (the "non-basic variables" are set to 0 : these correspond to the inequalities that define the current generalized orthant), $\hat{x}=b$ (the "basic variables" are uniquely determined). This starting solution has the value $\gamma=0$.
These systems are manipulated by row operations, which do not change the solution space. Thus after a number of steps we still have the system in the form

$$
\begin{aligned}
(P) \quad \max \bar{c}^{t} x_{N}+0^{t} x_{B} & =\bar{\gamma} \\
\bar{A}_{N} x_{N}+I_{n} x_{B} & =\bar{b} \\
x_{N} \geq 0, x_{B} \geq 0 &
\end{aligned}
$$

Here the columns have been resorted, to keep the "basic variables" and the "non-basic variables" together, that is, the index sets B and N together give the set of all columns labelled by $B \cup N=$ $\{1,2, \ldots, d+n\}$. The coefficients in the system are $\bar{A}_{N}=A_{B}^{-1} A_{N}$, and $\bar{b}=A_{B}^{-1} b$. The objective function has been rewritten in terms of the non-basic variables. Its coefficients

$$
\bar{c}_{N}^{t}=c_{N}^{t}-c_{B}^{t} A_{B}^{-1} A_{N}
$$

are known as the reduced costs: in the geometric interpretation they give the slopes of the rays of the current generalized orthant.
The current solution is given by $x_{N} \equiv 0$, which uniquely determines the non-basic variables to be $x_{B}=\bar{b}=A_{B}^{-1} b$.
Thus the (current solution of the) system is feasible if $\bar{b} \geq 0$, and it is dual feasible if $\bar{c}_{N} \leq 0$.
A similar treatment/computation can be done for the dual system (D).
Lemma 1.3. For any pair of primal linear program (P) and its dual program (D) in the equation form given above,

- the bases B for the system (P) are in bijection with the non-bases N of the system (D);
- the feasible bases for (P) are in bijection with the dual-feasible non-bases for (D);
- etc.

Proof. This rests on the observation that in the $(n+d) \times(n+d)$ matrix

$$
\left(\begin{array}{cc}
A & I_{n} \\
-I_{d} & A^{t}
\end{array}\right)
$$

the row space spanned by the first n rows is the orthogonal complement of the space spanned by the last d rows.

Theorem 1.4 (Duality Theorem for Linear Programming). If a primal linear program (P) and its dual (D) are both feasible, then they have optimal solutions x^{*} and $y *$, and these have the same optimal value.
If one of the programs is not feasible, then the other one is either infeasible as well, or it is unbounded.

Proof. The optimal solutions exist, since the Simplex Algorithm will find it!
From the geometry of an optimal basis/optimal generalized orthant, we also get complementary slackness: If in the optimal solution an inequality is not tight, then the corresponding variable in the dual program is zero; if a variable is positive, then the corresponding dual inequality has to be tight. This can also be seen from analysis of the inequalities in the proof of the Weak Duality Theorem.
The optimal solution to a linear program can be computed efficiently:
In Practice there are commercial, as well as non-commercial, software libraries for linear programming, which include implementations of the Primal Simplex Algorithm, the Dual Simplex Algorithm, as well as other methods (such as Interior Point Methods) which will solve to optimality practically every linear program that appears in practice.

In Theory there are two different computational models:
In the bit model the "Ellipsoid Method" (which will appear later in this course) is a polynomial time method for solving linear programs, whose running time is polynomial in the bit-size of the input. This method is theoretically very important, but has not been implemented in practice.
In the unit cost model the Simplex Algorithm with a suitable choice of variable selections ("pivot rule") may be polynomial - but this has not been proven. Indeed, we do not even know whether in general there is any short (i.e. polynomially many edges) path from a given starting vertex of the program to the optimal vertex. The best upper bound is the $n^{\log _{2} d}$ upper bound discussed at the beginning of this course - and this bound is not a polynomial in n and d. An upper bound of the type $d(n-d)$ might exist, but has not been proven.
Thus the complexity of Linear Programming, and in particular of the Simplex Algorithm, is a major open problem both for Optimization, and for Discrete Geometry!

1.3 Further Notes on Linear Programming

Let's step away from the simplex algorithm, and let's look at the problem itsself - and let's assume we have a solution method (algorithm, perhaps software) that solves the problem, but which we can treat as a "black box." This is the oracle view, which has become popular in optimization, with grave consequences for (computational) discrete and convex geometry: welldefined input, well-defined output; estimate complexity
Examples:

LP-OPTIMIZATION problem/oracle:

INPUT: $d \geq 1, n \geq 1, A \in \mathbb{Q}^{n \times d}, b \in \mathbb{Q}^{n}, c \in \mathbb{Q}^{d}$
TASK: $\max c^{t} x: A x \leq b, x \geq 0$
OUTPUT: optimal solution $x^{*} \in \mathbb{Q}^{d}$, with certificate (basis)
or information that problem is infeasible, with certificate (basis \& inequality), or information that problem is unbounded, with certificate (basis \& ray).

LP-FEASIBILITY problem/algorithms/oracle:

INPUT: $d \geq 1, n \geq 1, A \in \mathbb{Q}^{n \times d}, b \in \mathbb{Q}^{n}$
TASK: find $x: A x \leq b, x \geq 0$
OUTPUT: feasible solution $x^{*} \in \mathbb{Q}^{d}$, with certificate (basis) or information that problem is infeasible, with certificate (basis \& inequality).

Note: Any algorithm for solving LP-OPTIMIZATION can be used to solve LP-FEASIBILITY. We will see that the other direction "works as well."
Note: Two algorithms we know/could work out for LP-OPTIMIZATION: Fourier-Motzkin elimination (see Discrete Geometry I), and the Simplex Algorithm.

1.3.1 Complexity issues

Could it be that the solution exists, but it is too large (or too small) to write down in reasonable time?
Real input/solutions don't make sense, or need work to make sense of.
Recommended reading: Lovász' lecture notes [4].
Could get answer from Fourier-Motzkin elimination.
Here: get answer from simplex and Cramer's rule and Hadamard inequality.
Lemma 1.5 (Hadamard inequality). Let $A \in \mathbb{R}^{n \times n}$ be a matrix with columns $A=\left(A_{1}, \ldots, A_{n}\right)$. Then

$$
|\operatorname{det} A| \leq\left|A_{1}\right| \cdots\left|A_{n}\right|
$$

Lemma 1.6 (The Cramer's rule estimate). Let $A \in \mathbb{Z}^{n \times n}, b \in \mathbb{Z}^{n}$, $\operatorname{det} A \neq 0$ (integer data!). Then the (rational!) solution for the system of equations $A x=b$ satisfies

$$
\left|x_{i}\right| \leq\left|A_{1}\right| \cdots\left|A_{n}\right| \cdot|b| .
$$

Proof. Cramer's rule, together with the observation that the denominator, $\operatorname{det} A$, is an integer, so its absolute value is at least 1 . The same is true for the length of each column $\left|A_{i}\right|$.

1.3.2 Feasibility

First, we should discuss the problem how to find a feasible generalized orthant for $A x \leq b$, $x \geq 0$, in order to even start the simplex algorithm. Here are two solutions to that problem:

- Use the complexity estimates to get explicit upper bounds for the variables, and thus have a starting basis for the dual simplex algorithm (that is, a feasible basis for the simplex algorithm applied to the dual program).
- Phase I: Write down an artificial OPTIMIZATION program, which is feasible, and whose optimal solution (basis) will give a feasible solution (and a feasible basis!) for the FEASIBILITY problem: For example

$$
\min x_{0}: A x-x_{0} \mathbf{1} \leq b, x \geq 0, x_{0} \geq 0
$$

It is trivial that if we can solve LP-OPTIMIZATION then we can solve LP-FEASIBILITY, in a way that is completely independent of the the specific algorithm used to "implement" LP-OPTIMIZATION; that is, we can use any LP-OPTIMIZATION oracle to "simulate" an LP-FEASIBILITY algorithm; in other words, we can program a (fast) algorithm for LP-FEASIBILITY if we can use a (fast) subroutine for LP-OPTIMIZATION (e.g. by putting objective function zero).
However, note that the converse is also true: If we know how to solve LP-FEASIBILITY, then we can also solve LP-OPTIMIZATION, that is,

LP-FEASIBILITY \Longrightarrow LP-OPTIMIZATION.

For this, note that any feasible solution (x, y) for the primal-dual program

$$
\begin{aligned}
& c^{t} x \geq b^{t} y \\
& (P D) \quad A x \leq b \quad A^{t} y \geq c \\
& x \geq 0 \quad y \geq 0
\end{aligned}
$$

1.3.3 Modelling issues

Conversion of programs from equality form to inequality form, and conversely. See the Exercises.

1.3.4 Perturbation techniques

If we replace the right-hand sides b_{i} by $b_{i}+\varepsilon^{i}$, for a suitably small ε, then

- the perturbed problem will be feasible if and only if the original problem is feasible,
- the perturbed problem will be primally non-degenerate, that is, it describes a simple polyhedron, and at any generalized orthant (basis), no extra inequalities are tight (that is, the non-basic variables are non-zero).
(see Exercise).
Moreover,
- similarly, by perturbing the objective function the program can be made dually nondegenerate, so that in particular the optimal solution is unique (if it exists), and
- the suitable $\varepsilon>0$ can be estimated explicitly.

1.3.5 Integral solutions? An example

In general, the optimal solutions will not be integral, although many applications ask for integral solutions. Even if we find the best integral solution, this will come without a certificate, as there may be not dual constraints that are tight at the best integer solution.
However, in many combinatorial situations, we are lucky. Here is one example.
Example 1.7 (Network flows). If the bounds on each arc are integral, then the optimal solution will be integral.
(This may be seen from an algorithm by successive improvement, or from a matrix argument, see exercise.)
Interpretation of dual solutions: Max cut!
Max-Flow-Min-Cut theorem!
Exercise 1.8. Let $A \in\{0,1,-1\}^{n \times n}$ be a $0 / \pm 1$ matrix. Show that
(i) The determinant of a $0 / 1$-matrix A can be large, even if there are only two 1 s per row.
(ii) The determinant of A is not large if there is at most one 1 and at most one -1 per row.
(iii) Use the Hadamard inequality to give an upper bound on $|\operatorname{det} A|$
(iv) For $A \in\{0,1\}^{n \times n}$ give a much better upper bound, by

- Multiplying the matrix by 2 ,
- Adding a column of 0 's and then a row of 1 's,
- subtracting the first row from all others
and then applying Hadamard to the resulting ± 1-matrix.
(v) Give examples where this bound is tight.
[1] Gil Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming, Ser. B, 79:217-233, 1997. Proc. Int. Symp. Mathematical Programming (Lausanne 1997).
[2] Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter of graphs of polyhedra. Bulletin Amer. Math. Soc., 26:315-316, 1992.
[3] Victor Klee and David W. Walkup. The d-step conjecture for polyhedra of dimension $d<6$. Acta Math., 117:53-78, 1967.
[4] László Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50 of CMBSNSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1986.
[5] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Math., 176:383-412, 2012.
[6] Michael J. Todd. An improved Kalai-Kleitman bound for the diameter of a polyhedron. Preprint, April 2014, 4 pages, http://arxiv.org/abs/1402.3579.

2 Convex Bodies, Volumes, and Roundness

"Although convexity is a simple property to formulate, convex bodies possess a surprisingly rich structure" (Keith Ball [1])

Archimedes book "On the sphere and the cylinder"

2.1 Some basic definitions and examples

Definition 2.1 (Linear/affine/conical/convex hulls). Define in \mathbb{R}^{n} :

- Linear subspace, linear hull
- Affine subspace (possibly empty), affine hull
- Conical subspace (= convex cone, or simply cone), conical hull
- Convex hull, convex set

Definition 2.2 (Convex set, line-free, bounded, convex body). Define in \mathbb{R}^{n} : A convex set is

- line free: does not contain an affine line
- bounded: does not contain a ray
- convex body: a closed, bounded (that is, compact) full-dimensional convex set
- strictly convex: if $\lambda x+(1-\lambda) y \in \operatorname{int} C$ for $0<\lambda<1$ and $x \neq y$.

Examples:

- linear and affine subspaces
- convex polygons in the plane
- regular polyhedra in 3-space

Example 2.3. The unit ball of \mathbb{R}^{d} with ℓ_{2} norm is a centrally-symmetric proper convex body. Indeed, convexity follows from the triangle inequality

Thus the "theory of finite-dimensional Banach spaces" is equivalent to the "theory of centrallysymmetric convex bodies."
For example, Dvoretzky's theorem, which says that every centrally symmetric convex body in \mathbb{R}^{n} has a central section of dimension roughly $\log n$ that is linearly approximately equivalent to some \mathbb{R}^{d} with the Euclidean norm, is a theorem about centrally symmetric convex bodies, which have sections that are roughly ellipsoids. (Indeed, concentration of measure implies that a random subspace will do ...)

Example 2.4. The set PSD_{n} of positive semi-definite $(n \times n)$-matrices is a closed convex cone in $\mathbb{R}^{n \times n}$ of dimension $\binom{n+1}{2}$.
Example 2.5. If identify the N-dimensional vector space $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq 2 k}$ of real polynomials in d variables of degree less than $2 k$ with \mathbb{R}^{N}. Then the set

$$
\mathcal{P}_{d, 2 k}=\left\{p: p \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq 2 k} \text { and } p(x) \geq 0 \text { for all } x \in \mathbb{R}^{d}\right\}
$$

of positive polynomials is a closed convex cone in \mathbb{R}^{N}. Similarly the set

$$
\Sigma_{d, 2 k}=\left\{p: \exists h_{1}, \ldots, h_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq k} \text { such that } p(x)=h_{1}^{2}(x)+\ldots h_{n}^{2}(x)\right\}
$$

of sums of squares (SOS) is a closed convex cone in \mathbb{R}^{N}.

Exercise: The dimension of the vector space $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq 2 k}$ is $\binom{2 k+d}{d}$.
Theorem 2.6 (Gauß-Lucas Theorem). Let $p \in \mathbb{C}[z]$ be a complex polynomial in one variable with roots r_{1}, \ldots, r_{d}, then the roots of the derivative p^{\prime} of p are contained in the convex hull $\operatorname{conv}\left\{r_{1}, \ldots, r_{d}\right\}$.

Proof. If r_{1} is a zero of p as well as of p^{\prime}, then $r_{1}=1 r_{1}+0 r_{2}+\cdots+0 r_{d}$ is a convex combination. Assume z is a zero of p^{\prime} but not of p. Write p and p^{\prime} in terms of their roots (they factor over \mathbb{C}) and look at $\frac{p(z)}{p^{\prime}(z)}$ to get a convex combination of the r_{i}.

If p has only real roots, then the above result is a consequence of the Rolle's theorem (or the mean value theorem).

2.2 Topological properties

Theorem 2.7 (Carathéodory). Let $A \subseteq \mathbb{R}^{d}$ be a set and $x \in \operatorname{conv}(A)$ a point in the convex hull of A. Then there are $d+1$ points p_{1}, \ldots, p_{d+1} in A such that $x \in \operatorname{conv}\left\{p_{1}, \ldots, p_{d+1}\right\}$.

Proof. Write $x \in \operatorname{conv}(A)$ as convex combination of a minimal number of points $p_{1}, \ldots, p_{n} \in$ A. If n is more than $d+1$, then there is an affine dependency, where one of the coefficients is positive. Subtract a multiple of this dependency to kill one of the coefficients of the convex combination.
Corollary 2.8. If $A \subset \mathbb{R}^{d}$ is compact, then so is $\operatorname{conv}(A)$.
Proof. Let $\Delta_{d}=\operatorname{conv}\left\{e_{1}, \ldots, e_{d+1}\right\}$ be the standard d-simplex in \mathbb{R}^{d+1}. Consider a map from $A^{d+1} \times \Delta_{d} \rightarrow A$ given by $\left(p_{1}, \ldots, p_{d+1}, \lambda\right) \mapsto \sum \lambda_{i} p_{i}$. Clearly its image is contained in $\operatorname{conv}(A)$. The converse is true by Carathéodory's theorem. Hence $\operatorname{conv}(A)$ is the image of a compact set under a continuous map.

Definition 2.9 (interior points, interior, boundary points, boundary).
Definition 2.10 (relative interior, relative boundary).
Proposition 2.11. If K is convex, then relint K is also convex.
Lemma 2.12. If x_{0}, \ldots, x_{k} are affinely independent, $P:=\operatorname{conv}\left\{x_{0}, \ldots, x_{k}\right\}$, then $x \in \operatorname{relint} P$ if and only if $x=\lambda_{0} x_{0}+\cdots+\lambda_{k} x_{k}$ with all $\lambda_{i}>0$.

Corollary 2.13. K convex, not empty, then $\operatorname{relint} K \neq \emptyset$.
Definition 2.14 (dimension of a convex set).
Theorem 2.15 (Carathéodory's Theorem — ambient space free version).
Corollary 2.16. Characterization of relative interior of a polytope $P:=\operatorname{conv}\left\{x_{0}, \ldots, x_{n}\right\}$: $x=\lambda_{0} x_{0}+\cdots+\lambda_{k} x_{k}$ with all $\lambda_{i}>0$.
Definition 2.17 (extreme points).
Theorem 2.18 (Minkowski). K closed and bounded convex set, then $K=\operatorname{conv}(\operatorname{ext} K)$.

2.3 Support and separation

Definition 2.19 (Nearest point map). Let $A \subset \mathbb{R}^{d}$ be a non-empty closed convex set. Then the nearest-point map of A is the map $\pi_{A}: \mathbb{R}^{d} \rightarrow A$ which assigns to each $x \in \mathbb{R}^{d}$ the point on A with the smallest (Euclidean) distance from x.

Proposition 2.20. The map π_{A} of "Definition" 2.19 exists (that is, the nearest point exists, lies in A, and is unique) and the map is contractive:

$$
\left\|\pi_{A}(x)-\pi_{A}(y)\right\| \leq\|x-y\|
$$

and thus in particular continuous.
Exercise 2.21. There is a converse: If for a closed set A the nearest point $\pi_{A}(x)$ is unique for all x, then A is convex.

Notation: H hyperplane, H^{+}, H^{-}half spaces: They are closed convex sets, their interiors are $\operatorname{inter}\left(H^{+}\right)=\mathbb{R}^{d} \backslash H^{-}$and inter $\left(H^{-}\right)=\mathbb{R}^{d} \backslash H^{+}$, their boundary is $\partial H^{+}=\partial H^{-}=H$.

Definition 2.22 (separates). If $A \subseteq \mathbb{R}^{d}$ is a convex set and $p \in \mathbb{R}^{n}$, then a hyperplane H separates p from A if $p \in H^{+}$and $A \subseteq$ inter $\left(H^{-}\right)$, that is, $A \cap H^{+}=\emptyset$. The hyperplane H strictly separates A and p if $A \subseteq \operatorname{inter}\left(H^{-}\right)$and $p \in \operatorname{inter}\left(H^{+}\right)$.
If $A, B \subseteq \mathbb{R}^{d}$ are convex sets, then a hyperplane H separates B from A if $B \subset H^{+}$and $A \subseteq \operatorname{inter}\left(H^{-}\right)$. The hyperplane H strictly separates A and B if $A \subseteq \operatorname{inter}\left(H^{-}\right)$and $B \subseteq$ $\operatorname{inter}\left(H^{+}\right)$.

Note that if separation implies that the sets are disjoint, and strict separation implies weak separation. However, separation is not symmetric: There may be a hyperplane that separates B from A, but none that separates A from B.

Theorem 2.23 (Separation Theorem). Let $A \subseteq \mathbb{R}^{d}$ be a non-empty closed convex set and $p \notin A$, then there is a hyperplane that strictly separates p and A.

Proof. Set $q:=\pi_{A}(p), c:=p-q, H:=\left\{x \in \mathbb{R}^{d}: c^{t} x=c^{t} q\right\}$ and $H_{1 / 2}:=\left\{x \in \mathbb{R}^{d}: c^{t} x=\right.$ $\left.c^{t} q\right\}$.
An elementary geometric argument shows that $A \subset H^{-}$, while $p \notin H^{-}$, such that H separates p from A with $q \in H$, and $H_{1 / 2}$ strictly separates p and A.

Definition 2.24 (supporting hyperplane). A supporting hyperplane H for a convex set A satisfies $A \subseteq H^{-}$and $A \cap H \neq \emptyset$.
... so this exists by the (proof of the) Separation Theorem.
Corollary 2.25. closed convex set is intersection of half spaces given by supporting hyperplanes
Corollary 2.26. If A is a convex body, then for each direction $c \neq 0$ there is a unique supporting hyperplane $H=\left\{x: c^{t} x=\delta\right\}$.

Definition 2.27 (support function). Convex body A, define $h_{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by $h_{A}(c):=$ $\max \left\{c^{t} x: x \in A\right\}$.

Corollary 2.28. Convex body is determined by its support function.
Definition 2.29 (Minkowski sum). The Minkowski sum of two sets $A, B \subseteq \mathbb{R}^{d}$ is

$$
A+B:=\{x+y: x \in A, y \in B\} .
$$

Lemma 2.30. If A and B are convex, then so is $A+B=B+A$.
Lemma 2.31. K, L, M convex bodies. Then
(i) $h_{K+L}=h_{K}+h_{L}$.
(ii) $K+M=L+M$ implies $K=L$.

Remark 2.32. We have just established that the set of convex bodies \mathcal{K}_{d} is a cancellative commutative monoid (without neutral element).

Theorem 2.33 (Supporting Hyperplane Theorem). Let $A \subset \mathbb{R}^{d}$ be a closed and convex set. Then for every point p in the (relative) boundary ∂A of A there is a supporting hyperplane $H_{A}(p)$ for A at p, that is, $A \subseteq H_{A}^{-}(p)$ and $p \in H \cap A$.

Proof. If A is not full-dimensional, replace the ambient space by an affine subspace of dimension $\operatorname{dim}(A)$. A supporting hyperlane in this subspace lies inside some (actually many) hyperplanes in \mathbb{R}^{d}, all of which are supporting. So assume A is full-dimensional. Via the nearest point map π_{A} we get a supporting hyperplane for A at each point $\pi(y)$ for $y \in \mathbb{R}^{d} \backslash A$ with unit normal vector $\frac{y-\pi_{A}(y)}{\left\|y-\pi_{A}(y)\right\|_{2}}$. Take a series $\left(y_{n}\right) \subset \mathbb{R}^{d} \backslash A$ that converges to p. The corresponding sequence of unit normal vectors $u_{n}:=\frac{y_{n}-\pi_{A}\left(y_{n}\right)}{\left\|y_{n}-\pi_{A}\left(y_{n}\right)\right\|_{2}}$ for the supporting hyperplanes at $\pi_{A}\left(y_{n}\right)$ has, by compactness of the unit sphere, a subsequence converging to $u \in S^{d-1}$. There is a corresponding subsequence of $\left(y_{n}\right)$ that also converges to p. Using convergence of the sequences and continuity of the inner product argue that $H_{A}(p):=\left\{x \in \mathbb{R}^{d}: u^{t} x=u^{t} p\right\}$ is a supporting for A at p.

Proof of Minkowski's Theorem 2.18. The inclusion $K \supseteq \operatorname{conv}(\operatorname{ext} K)$ is trivial. For the other inclusion argue by induction on $d=\operatorname{dim}(C)$. The cases $d=0,1$ are trivial. Assume the theorem holds for all compact and convex sets of dimension less than d. Assume K has dimension d. Let $p \in \partial K$. Then, by Theorem 2.33 above, there is a supporting hyperplane $H_{K}(p)$ for K at p. The "face" $F:=K \cap H_{K}(p)$ is of lower dimension and hence $p \in \operatorname{conv}(\operatorname{ext} F)$. By the homework assignment $\operatorname{ext} F \subseteq \operatorname{ext} K$ and hence $p \in \operatorname{conv}(\operatorname{ext} K)$. If $p \in \operatorname{relint}(K)$ take a line through p that intersects ∂A in two points. Argue using faces that these points are in $\operatorname{conv}(\operatorname{ext} K)$, so p must be in $\operatorname{conv}(K)$ as well.

2.4 Spectrahedra

Definition 2.34. A spectrahedron S is the intersection of the cone PSD_{n} of symmetric positivesemidefinite matrices with a d-dimensional affine subspace V (of the space of symmetric $n \times n$ matrices). If A is positive semi-definite we write $A \succeq 0$.

Proposition 2.35. A spectrahedron S is convex and closed. It can be written as

$$
S=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: A_{0}+x_{1} A_{1}+\ldots x_{d} A_{d} \succeq 0\right\}
$$

for suitable symmetric matrices A_{0}, \ldots, A_{d} of size $n \times n$. Let $A(x):=A_{0}+x_{1} A_{1}+\ldots x_{d} A_{d}$ denote the (symmetric) matrix valued function from $\mathbb{R}^{d} \rightarrow \mathbb{R}^{n \times n}$.

Example 2.36. The cylinder

$$
C:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1,-1 \leq z \leq 1\right\}
$$

is a spectrahedron. Consider the points $(x, y, z) \in \mathbb{R}^{3}$ such that the sum

$$
A_{0}+x A_{1}+y A_{2}+z A_{3}=\left(\begin{array}{cccc}
1+x & y & 0 & 0 \\
y & 1-x & 0 & 0 \\
0 & 0 & 1+z & 0 \\
0 & 0 & 0 & 1-z
\end{array}\right) \succeq 0
$$

Here A_{0} is the identity matrix. A_{1} has a 1 in position $(1,1)$ and a -1 at $(2,2)$ and otherwise zeros. A_{2} is zero except for 1 s at $(1,2)$ and $(2,1)$. Finally, A_{3} is zero except for a 1 at $(3,3)$ and a -1 at $(4,4)$. It turns out that C is the set of all points $w=(x, y, z)$ that satisfy $A(w) \succeq 0$. The cylinder C can also be viewed as the intersection of PSD_{4} with the affine subspace $A_{0}+\operatorname{span}\left\{A_{1}, A_{2}, A_{3}\right\}$.

Proposition 2.37. Any polyhedron P is a spectrahedron.
Proof commented, since it is a current exercise.
Example 2.38. Any univariate sum of squares (SOS) polynomial $p \in \mathbb{R}[t]$ of degree $2 n$ that can be written as

$$
p=\left(1, t, t^{2}, \ldots, t^{n}\right)^{t}\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1-2 a & 0 \\
a & 0 & 1
\end{array}\right)\left(1, t, t^{2}, \ldots, t^{n}\right)
$$

defines a spectrahedron S, where S is given by all a such that the matrix is positive semidefinite. Actually $S=[-1,1 / 2]$. This extends to polynomials of higher degree that can be written as $\mathbf{t}^{t} A \mathbf{t}$ for positive semi-definite A.
Example 2.39 (Non-example). Consider the (linear) projection of the cylinder C into the plane given by $x+2 z=0$. What we get is the convex hull C^{\prime} of two non-intersecting ellipses in the plane. Recalling that a matrix is positive semidefinite if the determinants of all of its diagonal minors are non-negative, we can conclude that any spectrahedron must be a so-called basic semialgebraic set, that is, a set of points satisfying finitely many polynomial inequalities where the polynomials are of finite degree. Using the fact that infinitely many points determine a polynomial of finite degree one can argue that C^{\prime} is not basic semialgebraic, hence implying that C^{\prime} is not a spectrahedron.

2.5 Löwner-John ellipsoids and roundness

Definition 2.40. An ellipsoid $E \subseteq \mathbb{R}^{d}$ is the image $f\left(B^{d}\right)$ of the unit ball under an invertible affine transformation $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

If the transformation is $f: x \mapsto A x+c$, then

$$
\begin{aligned}
f\left(B^{d}\right) & =\left\{x \in \mathbb{R}^{d}:\left\langle A^{-1}(x-c), A^{-1}(x-c)\right\rangle \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{d}:\langle Q(x-c), x-c\rangle \leq 1\right\}
\end{aligned}
$$

for $Q=A^{*} A^{-1}=\left(A A^{t}\right)^{-1}$ positive-definite.
Lemma 2.41. The volume of E is $|\operatorname{det} A| \operatorname{vol} B^{d}=\frac{\operatorname{vol} B^{d}}{\sqrt{\operatorname{det} Q}}$.
Exercise 2.42. If $E=\left\{x \in \mathbb{R}^{d}:\langle Q x, x\rangle \leq 1\right\}$, show that the polar is $E^{*}=\left\{x \in \mathbb{R}^{d}\right.$: $\left.\left\langle Q^{-1} x, x\right\rangle \leq 1\right\}$. Deduce that $(\operatorname{vol} E)\left(\operatorname{vol} E^{*}\right)=\left(\operatorname{vol} B^{d}\right)^{2}$.

Exercise 2.43. If $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a surjective linear map, and $E \subset \mathbb{R}^{d}$ is an ellipsoid, then $g(E)$ is an ellipsoid in \mathbb{R}^{k}.

Lemma 2.44. Every ellipsoid $E \subset \mathbb{R}^{d}$ can be written in the form $E=S\left(B^{d}\right)+c$, where S is a positive-definite (symmetric) matrix.

Proof. Use the (left) polar decomposition: every invertible A can be written as $A=P^{\prime} U$, where $U=A{\sqrt{A^{t} A}}^{-1}$ is a unitary matrix, and $P^{\prime}=A U^{-1}=\sqrt{A A^{t}}$ is positive-definite. Then $A\left(B^{d}\right)=S\left(B^{d}\right)$.

Lemma 2.45. If X, Y are positive-definite (symmetric square) matrices, then

$$
\operatorname{det}\left(\frac{X+Y}{2}\right) \geq \sqrt{\operatorname{det}(X) \operatorname{det}(Y)}
$$

with equality if and only $X=Y$.
Proof. We can write $X=U^{t} D^{2} U$ for unitary U and non-negative diagonal D, and with this $Y=U^{t} D Y^{\prime} D U$. With this we obtain that without loss of generality $X=I_{d}$.
Furthermore, the resulting Y^{\prime} can be diagonalized, and without loss of generality Y is diagonal. Then things reduce to simple inequalities of the form $\frac{1+\lambda_{i}}{2} \geq \sqrt{\lambda_{i}}$ for certain positive eigenvalues λ_{i}.

Theorem 2.46 (Löwner-John). If $K \subset \mathbb{R}^{d}$ is a convex body, then the maximum-volume ellipsoid $E \subseteq K$ exists and is unique.

Proof. For the existence, consider the set

$$
X:=\left\{(S, c): S \text { positive semidefinite, } c \in \mathbb{R}^{d}, S\left(B^{d}\right)+c \subseteq K\right\} .
$$

By Lemma 2.44, every ellipsoid in K is represented by a pair (S, c) in X. As K is bounded, we get that X is bounded. It is also closed, so it is compact. Moreover, the volume function on X, given by $\operatorname{det}(S) \operatorname{vol}\left(B^{d}\right)$, is continuous, so the maximum exists.

To show that it is unique, first note that from any two ellipsoids of the same maximum volume $E_{1}=S_{1}\left(B^{d}\right)+c_{1}$ and $E_{2}=S_{2}\left(B^{d}\right)+c_{2}$ we can construct a new one $\frac{1}{2}\left(E_{1}+E_{2}\right)$ given by $S:=\frac{1}{2}\left(S_{1}+S_{2}\right)$ and $c:=c_{1}+c_{2}$. Lemma 2.45 now yields that if both E_{1} and E_{2} have maximal volume, then $S_{1}=S_{2}$.
To see $c_{1}=c_{2}$, we may now after a coordinate transformation assume that $S_{1}=S_{2}=I$ is a unit ball. So we just have to show that the convex hull of the union of two distinct unit balls contains an ellipsoid of larger volume.

Theorem 2.47. The minimal volume ellipsoid that contains a given convex body K is also unique.

Theorem 2.48. Let $K \subset \mathbb{R}^{d}$ be a convex body and let $E \subseteq K$ be the maximal volume ellipsoid in K, where we assume that its center is the origin 0 . Then

$$
E \subseteq K \subset d E
$$

Proof. Elementary calculation.
Theorem 2.49. Let $K=-K \subset \mathbb{R}^{d}$ be a centrally-symmetric convex body and let $E \subseteq K$ be the maximal volume ellipsoid in K. Then

$$
E \subseteq K \subset \sqrt{d} E
$$

Proof. Elementary calculation.

2.6 Volume computation and ellipsoids

Theorem 2.50 (Ernst Sas (1939)). Let C be a convex disk (a convex body in the plane) and let $n \geq 3$ be an integer. If $P_{(n)}$ is an n-gon of maximal area contained in C, and P_{n}^{2} is a regular n-gon inscribed into the unit disk B^{2}, then

$$
\frac{\operatorname{vol}\left(P_{(n)}\right)}{\operatorname{vol}(C)} \geq \frac{\operatorname{vol}\left(P_{n}^{2}\right)}{\operatorname{vol}\left(B^{2}\right)}=\frac{n}{2 \pi} \sin \frac{2 \pi}{n},
$$

with equality if and only if C is an ellipse.
(Extension by Alexander Macbeath (1951)) Let C be a convex body in \mathbb{R}^{d} and let $n \geq d+1$ be an integer. If $P_{(n)}$ is a polytope with n vertices of maximal volume contained in C, and P_{n}^{d} is a convex polytope of maximal volume inscribed into the unit ball B^{d}, then

$$
\frac{\operatorname{vol}\left(P_{(n)}\right)}{\operatorname{vol}(C)} \geq \frac{\operatorname{vol}\left(P_{n}^{d}\right)}{\operatorname{vol}\left(B^{d}\right)}
$$

with equality if and only if C is an ellipsoid.
(Discussed without proof; see problem set for references.)

Theorem 2.51 (György Elekes (1986)). Let $P_{(n)}^{d}$ be a convex d-polytope with n vertices contained in B^{d}. Then

$$
\frac{\operatorname{vol}\left(P_{(n)}^{d}\right)}{\operatorname{vol}\left(B^{d}\right)} \leq \frac{n}{2^{d}}
$$

Proof. If $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$, show that the balls with diameter $\left[0, v_{i}\right]$ cover P. Each of these has volume at most $\frac{1}{2} \operatorname{vol}\left(B^{d}\right)$.

Definition 2.52 (oracles). MEMBERSHIP, SEPARATION

VALIDITY, VIOLATION
Definition 2.53 (guarantees). A convex body is well-guaranteed if we know that

- $C \subseteq B(0, R)$
and if one of the (equivalent!) properties holds:
- C contains a ball of radius r_{0}, for a specified $r_{0}>0$.
- C has width w_{0}, for a specified $w_{0}>0$.
- C has volume at least v_{0}, for a specified $v_{0}>0$.

Corollary 2.54. A well-guaranteed MEMBERSHIP oracle needs exponential time for any reasonable volume estimate.

2.7 The Ellipsoid method

Lemma 2.55. Let $B_{+}^{d}=\left\{x \in \mathbb{R}^{d}:|x|^{2} \leq 1, x_{d} \geq 0\right.$ be the "positive half d-ball." Then the ellipsoid

$$
E:=\left\{x \in \mathbb{R}^{d}:\left(1-\frac{1}{d^{2}}\right)\left(x_{1}^{2}+\cdots+x_{d-1}^{2}\right)+\left(1+\frac{1}{d}\right)^{2}\left(x_{d}-\frac{1}{d+1}\right) \leq^{1}\right\}
$$

satisfies

1. $B_{+}^{d} \subseteq E$,
2. $\frac{\operatorname{vol} E}{\operatorname{vol} B_{+}^{d}} \leq e^{-1 /(2(d+1))}$.

Proof. Simple calculations. For (2) use $1+x \leq e^{x}$.

Theorem 2.56 (Ellipsoid Method: Khatchian, Grötschel-Lovász-Schrijver). If a convex body is given by a well-guaranteed SEPARATION oracle, e.g. by the guarantee that if C is not empty then it satisfies

$$
B\left(x_{0}, r\right) \subseteq C \subseteq B(x, R)
$$

for known $r \leq R$ but unknown x_{0}, then there is an algorithm that decides that C is empty or finds a point $x \in C$ after at most

$$
2 d(d+1) \ln \frac{R}{r}
$$

calls to the oracle.

Proof. Start with $E_{0}:=B(0, r)$, and construct a sequence of ellipsoids E_{0}, E_{1}, \ldots by querying the center c_{i} of E_{i}. If $c_{i} \in C$ we are done, otherwise Lemma 2.55 yields E_{i+1} such that we have
(1) If C is not empty, then $B\left(x_{0}, r\right) \subseteq E_{i+1}$,
(2) $\operatorname{vol} \frac{\operatorname{vol}\left(E_{i+1}\right)}{\operatorname{vol}\left(E_{i}\right)} \leq e^{-y \frac{1}{2(d+1)}}$.

Thus the sequence breaks off at some ellipsoid E_{n} with

$$
n \leq 2(d+1) \frac{\operatorname{vol}(B(0, R))}{\operatorname{vol}\left(B\left(x_{0}, r\right)\right)}=2(d+1) \frac{R^{d}}{r^{d}}
$$

2.8 Polarity, and the Mahler conjecture

Definition 2.57 (Polar dual). For $\emptyset \neq K \subset \mathbb{R}^{d}$:

$$
K^{*}:=\left\{c \in \mathbb{R}^{d}: c^{t} x \leq 1 \text { for all } x \in K\right\}
$$

is the polar of the set K.
Lemma 2.58. Let $\emptyset \neq K \subset \mathbb{R}^{d}$.
(1) $0 \in K^{*}$; the set K^{*} is closed and convex.
(2) $\left(\mathbb{R}^{d}\right)=\{0\},\{0\}^{*}=\mathbb{R}^{d} ;$ for any linear subspace $L \subset \mathbb{R}^{s}, L^{*}=L^{\perp}$.
(3) $K \subseteq L$ implies $L^{*} \subseteq K^{*}$.
(4) $\left(\bigcup_{i \in I} K_{i}\right)^{*}=\bigcap_{i \in I} K_{i}{ }^{*}$.
(5) $(\alpha K)^{*}=\frac{1}{\alpha} K^{*}$ for $\alpha>0$.
(6) $(A K)^{*}=\left(A^{t}\right)^{-1} K^{*}$ for any invertible $(d \times d)$-matrix A.
(7) $K=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$ implies $K^{*}=\left\{y \in \mathbb{R}^{d}: y^{t} v_{i} \leq 1\right.$ for $\left.1 \leq i \leq n\right\}$.
(8) $K \subseteq K^{* *}$.

Theorem 2.59 (Bipolar theorem). If $K \subseteq \mathbb{R}^{d}$ is closed, convex, and contains 0 , then $K=K^{* *}$.
Note: If K is a \mathcal{V}-polytope, then K^{*} is an \mathcal{H}-polyhedron, etc.

Definition 2.60. The Hanner polytopes are the polytopes that can be generated from the interval $I:=[-1,+1]$ by any two of the three operations product, direct sum \oplus, and product \times.
(Any two of the operations allow us to also "simulate" the third one here, as $I^{*}=I$ and $P \oplus Q=\left(P^{*} \times Q^{*}\right)^{*}$ and $P \times Q=\left(P^{*} \oplus Q^{*}\right)^{*}$.)

Proposition 2.61 (On Hanner polytopes). (0) The number of combinatorial types for $d \geq 1$ grows exponentially: $n(d)=1,1,2,4,8,18,40,94, \ldots$
(1) All Hanner polytopes have 3^{d} non-empty faces, $f_{0}+f_{1}+\cdots+f_{d}=3^{d}$.
(2) All Hanner polytopes satisfy $\operatorname{vol}(P) \operatorname{vol}\left(P^{*}\right)=\frac{4^{k}}{d!}$

Conjecture 2.62 (The Mahler conjecture: Kurt Mahler, 1939; the 3^{d} conjecture: Kalai 1988). Let K be a convex body in \mathbb{R}^{d} with $K=-K$, then

$$
\operatorname{vol}(K) \operatorname{vol}\left(K^{*}\right) \geq \frac{4^{k}}{d!}
$$

with equality exactly for the Hanner polytopes.
Let P be a d-polytope in \mathbb{R}^{d} with $P=-P$, then

$$
f_{0}+f_{1}+\cdots+f_{d} \geq 3^{d}
$$

with equality exactly for the Hanner polytopes.
Note that for the (long-standing) Mahler conjecture, it is not even clear that the extremal objects are polytopes, as we are searching in the class of convex bodies. It is also not trivial that objects (convex bodies) achieving the minimum even exist! (This needs a compactness result such as the Blaschke selection principle, to be discussed later.)
For a recent overview/discussion of the Mahler conjecture [4], see Tao's blog [6].
For proofs/details on Hansen polytopes and the 3^{d} conjecture, see Hansen [2], Kalai [3], as well as Sanyal et al. [5].
[1] Keith Ball. An elementary introduction to modern convex geometry. In S. Levy, editor, Flavors of Geometry, volume 31 of Publ. MSRI, pages 1-58. Cambridge University Press, 1997.
[2] Olof Hanner. Intersections of translates of convex bodies. Math. Scand., 4:67-89, 1956.
[3] Gil Kalai. The number of faces of centrally-symmetric polytopes. Graphs and Combinatorics, 5:389-391, 1989. (Research Problem).
[4] Kurt Mahler. Ein Übertragungsprinzip für konvexe Körper. Casopis Pest. Mat. Fys., 68:93-102, 1939.
[5] Raman Sanyal, Axel Werner, and Günter M. Ziegler. On Kalai's conjectures about centrally symmetric polytopes. Discrete Comput. Geometry, 41:183-198, 2009.
[6] Terry Tao. Open question: the Mahler conjecture on convex bodies. Blog page started March 8, 2007, http://terrytao.wordpress.com/2007/03/08/open-problem-the-mahler-conjecture-on-convex-bodies/.

3 Geometric inequalities, mixed volumes, and isoperimetric problems

3.1 Introduction: Arithmetic inequalities

Lemma 3.1. Among all rectangles with area A a square has the minimal inequality.
Proof. This translates into

$$
2(a+b) \geq 4 \sqrt{a b}
$$

for $a, b \geq 0$, with equality if and only if $a=b$, where the left-hand side is the perimeter, the right-hand side is 4 times the area. The inequality is equivalent to $\sqrt{a b} \leq \frac{a+b}{2}$, that is, geometric mean is smaller or equals to arithmetic mean, which is proved by squaring, where $a b \geq\left(\frac{a+b}{2}\right)^{2}$ is equivalent to $(a-b)^{2} \geq 0$.

Theorem 3.2 (Arithmetic-Geometric Mean inequality). For $z_{1}, \ldots, z_{n} \geq 0$,

$$
\frac{z_{1}+\cdots+z_{n}}{n} \geq \sqrt[n]{z_{1} \cdots z_{n}}
$$

with equality only if all z_{i} are equal.
Proof. We discussed two proofs. The first one noted that all this is trivial if one of the z_{i} is zero, and otherwise with the substitution $z_{i}=e^{y_{i}}$ this can be derived from convexity of the function $y \mapsto e^{y}$.
Second proof: by a non-standard induction, taken from [1].
Lemma 3.3 ("Minkowski's inequality"). For $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \geq 0$, we have

$$
\sqrt[n]{\left(x_{1}+y_{1}\right) \cdots\left(x_{n}+y_{n}\right)} \geq \sqrt[n]{x_{1} \cdots x_{n}}+\sqrt[n]{y_{1} \cdots y_{n}}
$$

with equality if and only if

- $x_{i}=\lambda y_{i}$ for all i and a fixed λ_{i},
- $x_{1}=\cdots=x_{n}=1$,
- $y_{1}=\cdots=y_{n}=1$, or
- $x_{i}=y_{i}=0$ for some value of i.

Proof. In the case that $x_{i}=y_{i}=0$ for some value of i the inequlity is clearly true with equality. Otherwise we have $x_{i}+y_{i}>0$ for all i and thus can set

$$
x_{i}^{\prime}:=\frac{x_{i}}{x_{i}+y_{i}}, \quad y_{i}^{\prime}:=\frac{y_{i}}{x_{i}+y_{i}}
$$

for all i, so we have to prove that

$$
\sqrt[n]{x_{1}^{\prime} \cdots x_{n}^{\prime}}+\sqrt[n]{y_{1} \cdots y_{n}} \leq 1
$$

which is obtained from a simple calculation using the AGM inequality as well as $x_{i}^{\prime}+y_{i}^{\prime}=1$. The remaining equality cases are also obtained from the AGM inequality.

3.2 Brunn's Slice Inequality and the Brunn-Minkowski Theorem

For the following, let $K \subset \mathbb{R}^{d+1}$ be a $(d+1)$-dimensional convex body. For $c \neq 0$ we slice it by the parallel hyperplanes $H_{t}:=\left\{x \in \mathbb{R}^{t+1}: c^{t} x=t\right.$, and consider the volume of the slices, measured by the function

$$
f_{K}(t):=\operatorname{vol}\left(K \cap H_{t}\right) .
$$

Definition 3.4 (unimodal/concave function). A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is unimodal if $a<b<c$ implies that $f(b) \geq \min \{f(a), f(c)\}$.
f is concave if $f(b) \geq \frac{b-c}{a-c} f(a)+\frac{b-a}{c-a} f(c)$ for $a<b<c$, or equivalently if $f((1-\lambda) a+\lambda f(c)) \geq$ $(1-\lambda) f(a)+\lambda f(c)$.
Important observation: $f_{K}(t)$ is in general not concave!
Theorem 3.5 (Brunn's slice inequality). Let $K \subset \mathbb{R}^{d+1}$ be a $(d+1)$-dimensional convex body, and let $f_{K}(t):=\operatorname{vol}\left(K \cap H_{t}\right)$ be the slice function for the parallel hyperplanes $H_{t}:=\{x \in$ $\mathbb{R}^{t+1}: c^{t} x=t$, then

$$
\sqrt[d]{f_{K}}: \quad t \longmapsto \sqrt[d]{\operatorname{vol}\left(K \cap H_{t}\right)}
$$

is concave on the interval $\left[t_{\min }, t_{\max }\right]=\left\{t \in \mathbb{R}: K \cap H_{t} \neq 0\right\}$. Thus, in particular, f_{K} is unimodal on all of \mathbb{R}.

Theorem 3.6 ("Brunn-Minkowski inequality"). (1) Let $K, L \subset \mathbb{R}^{d}$ be convex bodies, then

$$
\sqrt[d]{\operatorname{vol}(K+L)} \geq \sqrt[d]{\operatorname{vol}(K)}+\sqrt[d]{\operatorname{vol}(K)}
$$

with equality if and only if K and L are positively homothetic, that is, $K=\mu L+x_{0}$ for a positive factor $\mu>0$ and a translation vector $x_{0} \in \mathbb{R}^{d}$.
(2) Let $K, L \subset \mathbb{R}^{d}$ be nonempty compact (closed bounded) convex sets, then the same inequality holds, with equality if and only if

- K and L are positively homothetic,
- K and L lie in parallel hyperplanes, or
- one of K and L is a point.
(3) Let $K, L \subset \mathbb{R}^{d}$ be compact and nonempty, then the inequality above still holds.

Remark 3.7. An equivalent version writes the Brunn-Minkowski Inequality (BMI) as

$$
\sqrt[d]{\operatorname{vol}\left((1-\lambda) K_{0}+\lambda K_{1}\right)} \geq(1-\lambda) \sqrt[d]{\operatorname{vol}\left(K_{0}\right)}+\lambda \sqrt[d]{\operatorname{vol}\left(K_{1}\right)}
$$

for $0 \leq \lambda \leq 1$.
Proof that the Brunn-Minkowski inequality 3.6 implies the Brunn Slice Theorem 3.5. Without loss of generality we may assume that $c^{t} x=x_{d+1}$.
Furthermore without loss of generality we use $a=0$ and $b=1$.
Define $K_{0} \times\{0\}:=K \cap H_{0}$ and $K_{1} \times\{1\}:=K \cap H_{1}$. Then K contains the so-called Cayley embedding of K_{0} and K_{1} into parallel hyperplanes,

$$
C\left(K_{0}, K_{1}\right)=\operatorname{conv}\left\{\left(K_{0} \times\{0\}\right) \cap\left(K_{1} \times\{1\}\right)\right\}
$$

with

$$
\left.\left.K \cap H_{\lambda} \supseteq C\left(K_{0}, K_{1}\right) \cap H_{\lambda}=\left((1-\lambda) K_{0}+\lambda K_{1}\right) \times\{\lambda\}\right)\right\} .
$$

For this, the BMI yields

$$
\sqrt[d]{\operatorname{vol}\left(K_{\lambda}\right)} \geq \sqrt[d]{\operatorname{vol}\left((1-\lambda) K_{0}+\lambda K_{1}\right)} \geq(1-\lambda) \sqrt[d]{\operatorname{vol}\left(K_{0}\right)}+\lambda \sqrt[d]{\operatorname{vol}\left(K_{1}\right)}
$$

and we are done.
Now we tackle the Brunn-Minkowski Inequality (Theorem 3.6), where we use a combinatorial approach, which yields the most general part (3), however without the characterization of the cases of equality.

Lemma. BMI holds for nonempty convex sets if it holds for polyboxes.
Here we use knowledge from Measure Theory: We can approximate any compact set in \mathbb{R}^{d} arbitrarily well with finite unions of axis-parallel rectangular boxes, in such a way that in the limit the measure of the boxes yields the measure of the convex set.
A polybox consisting of n boxes is a union n axis-parallel rectangular boxes in \mathbb{R}^{d} with disjoint interiors. (The condition of "disjoint interiors" is irrelevant for the types of subsets we obtain, but it is relevant for the number n of boxes needed to get a set.)

Proof of the Brunn-Minkowski inequality 3.6, part (3), for polyboxes. Let $S, T \subset \mathbb{R}^{d}$, which together have $n \geq 2$ polyboxes. We will use induction on the number n of boxes.
The case of $n=2$ is precisely given by the Minkowski inequality, Lemma 3.3.
For $n>2$ we may assume that K contains of at least 2 boxes.
We can now find a coordinate hyperplane, w.l.o.g. $H=\left\{x \in \mathbb{R}^{d}: x_{d}=0\right\}$, which separates two boxes of S, such that there are less than n boxes of S and T that have volume above H and also less than n boxes below.
Let $p:=\frac{\operatorname{vol}\left(S^{+}\right)}{\operatorname{vol}(S)}$ be the fraction of volume of K above H, so $0<p<1$.
Translate T so that it has the same volume fraction $p=\frac{\operatorname{vol}\left(T^{+}\right)}{\operatorname{vol}(T)}$.
Now we compute, using in the first step that $S^{+}+T^{+} \subseteq\left\{x \in \mathbb{R}^{d}: x_{d} \geq 0\right.$ and $S^{-}+T^{-} \subseteq$ $\left\{x \in \mathbb{R}^{d}: x_{d} \leq 0\right.$ lie in opposite halfspaces, so their interiors don't overlap, and in the second step the BMI,

$$
\begin{aligned}
\operatorname{vol}(S+T) & \geq \operatorname{vol}\left(S^{+}+T^{+}\right)+\operatorname{vol}\left(S^{-}+T^{-}\right) \\
& \geq\left(\sqrt[d]{\operatorname{vol}\left(S^{+}\right)}+\sqrt[d]{\operatorname{vol}\left(T^{+}\right)}\right)^{d}+\left(\sqrt[d]{\operatorname{vol}\left(S^{-}\right)}+\sqrt[d]{\operatorname{vol}\left(T^{-}\right)}\right)^{d} \\
& =(\sqrt[d]{p} \sqrt[d]{\operatorname{vol}(S)}+\sqrt[d]{p} \sqrt[d]{\operatorname{vol}(T)})^{d}+(\sqrt[d]{1-p} \sqrt[d]{\operatorname{vol}(S)}+\sqrt[d]{1-p} \sqrt[d]{\operatorname{vol}(T)})^{d} \\
& =p(\sqrt[d]{\operatorname{vol}(S)}+\sqrt[d]{\operatorname{vol}(T)})^{d}+(1-p)(\sqrt[d]{\operatorname{vol}(S)}+\sqrt[d]{\operatorname{vol}(T)})^{d} \\
& =(\sqrt[d]{\operatorname{vol}(S)}+\sqrt[d]{\operatorname{vol}(T)})^{d} .
\end{aligned}
$$

3.3 Minkowski's existence and uniqueness theorem

Theorem 3.8 (Minkowski's existence and uniqueness theorem). Let $d \geq 1, a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ distinct unit vectors, spanning, and $\alpha_{1}, \ldots, \alpha_{n}>0$.
Then a d-polytope $P \subset \mathbb{R}^{d}$ with unit facet normals a_{i} and facet volumes α_{i} exists if and only if

$$
\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}=0
$$

This is trivial for $d=1$ and elementary (Exercise) for $d=2$.
Proof. For the "only if" part we consider an arbitrary projection along a vector c, and find $\operatorname{vol}\left(\overline{F_{i}}\right)=\left\langle c, a_{i}\right\rangle \operatorname{vol}\left(F_{i}\right)$, and in the projection the volumes (with signs!) add to zero, so

$$
\left\langle c, \alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}\right\rangle=0 .
$$

As this holds for every c, we are done.
For the "if" part we have to construct a suitable polytope for given data a_{i} and α_{i}.
Proposition 3.9. If the rows of A are spanning and positively dependent, then

$$
\mathcal{B}_{A}=\operatorname{im}(A)+\mathbb{R}_{\geq 0}^{n} .
$$

where $\operatorname{im}(A)$, the image of $x \mapsto A x$, is the column span of the matrix A. In particular, \mathcal{B}_{A} is a convex polyhedral cone, and its lineality space is $\operatorname{im} A$, that is, the complete lines in \mathcal{B}_{A} correspond to translations in \mathbb{R}^{d}.
(The proof of the proposition is routine.)

We now define the matrix $A \in \mathbb{R}^{n \times d}$ with rows $a_{1}^{t}, \ldots, a_{n}^{t}$, and the vector of right-hand sides $b \in \mathbb{R}^{n}$. Consider the polyhedron $P_{A}(b)$ as a function of the right-hand sides, which yields

$$
P_{A}(b):=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\},
$$

a non-empty polyhedron on the cone $\mathcal{B}_{A}=\left\{b \in \mathbb{R}^{n}: P_{A}(b) \neq \emptyset\right\}$, and

$$
\mathcal{M}_{A}:=\left\{b \in \mathbb{R}^{n}: \operatorname{vol}\left(P_{A}(b)\right) \geq 1\right\}
$$

Proposition 3.10. If the rows of A are spanning and positively dependent, then \mathcal{M}_{A} is a convex set with lineality space is $\operatorname{im} A$. That is, $\overline{\mathcal{M}_{A}}:=\mathcal{M}_{A} / \operatorname{im}(A)$ is a strictly convex closed convex set.

Proof. Let $b^{\prime}, b^{\prime \prime} \in \mathcal{M}_{A}$ be right-hand sides that yield polyhedra $P_{A}\left(b^{\prime}\right), P_{A}\left(b^{\prime \prime}\right)$ of volume at least 1 , and $b:=(1-\lambda) P_{A}\left(b^{\prime}\right)+\lambda P_{A}\left(b^{\prime \prime}\right)$.
Then we find

$$
(1-\lambda) P_{A}\left(b^{\prime}\right)+\lambda P_{A}\left(b^{\prime \prime}\right) \subseteq P_{A}(b)
$$

(Check this!)
Applying the BMI now yields

$$
\begin{aligned}
\operatorname{vol}\left(P_{A}(b)\right) & \geq \operatorname{vol}\left((1-\lambda) P_{A}\left(b^{\prime}\right)+\lambda P_{A}\left(b^{\prime \prime}\right)\right) \\
& \geq(1-\lambda) \operatorname{vol}\left(P_{A}\left(b^{\prime}\right)\right)+\lambda \operatorname{vol}\left(P_{A}\left(b^{\prime \prime}\right)\right) \geq 1 .
\end{aligned}
$$

Equality here means that we need that both $P_{A}\left(b^{\prime}\right)$ and $P_{A}\left(b^{\prime \prime}\right)$ have volume 1 (for the third inequality), where $P_{A}\left(b^{\prime}\right)$ and $P_{A}\left(b^{\prime \prime}\right)$ need to be positive homothets to get equality in the second inequality (the BMI), so as they have the same volume they need to be translates, which implies that $b^{\prime}-b^{\prime \prime} \in \operatorname{im}(A)$.

Proposition 3.11. On the interior of \mathcal{B}_{A}, the function $b \mapsto \operatorname{vol}\left(P_{A}(b)\right)$ is differentiable (it is piecewise-polynomial), with

$$
\frac{\partial}{\partial b_{i}} \operatorname{vol}\left(P_{A}(b)\right)=\operatorname{vol}_{d-1}\left(P_{A}(b)^{a_{i}}\right)=\operatorname{vol}_{d-1}\left(F_{i}\left(P_{A}(b)\right)\right)
$$

Proof. Elementary geometry: If we vary b_{i} a bit, $P_{A}(b)$ changes by moving the facet hyperplane of F_{i}, and the volume of the difference to first order is the volume of the facet F_{i} times the height of variation.

Corollary 3.12. In every boundary point $b^{0} \in \partial \mathcal{M}_{A}$, there is a unique supporting hyperplane, which is given by

$$
H=\left\{y \in \mathbb{R}^{n}: \frac{1}{d} \sum_{i} \operatorname{vol}\left(F_{i}\left(P_{A}\left(b^{0}\right)\right)\right) y_{i}=1\right\}
$$

Proof. This relies on the volume formula for $P_{A}(b)$, which is

$$
\operatorname{vol}\left(P_{A}(b)\right)=\frac{1}{d} \operatorname{vol}\left(F_{i}\left(P_{A}(b)\right)\right) b_{i}
$$

which is elementary. (For this consider first x as an interior point of $P_{A}(b)$, then $P_{A}(b)$ decomposes into pyramids with base $F_{i}\left(P_{A}(b)\right)$ and height $h_{i}=b_{i}-a_{i}^{t} x$. The volume thus is $\operatorname{vol}\left(P_{A}(b)\right)=\frac{1}{d} \operatorname{vol}\left(F_{i}\right)\left(b_{i}-a^{t} x\right)$, which gives the correct result, which of course has to be independent of x, by the "only if" part of the Existence and Uniqueness theorem, for which we had established that $\sum_{i} \operatorname{vol}\left(F_{i}\right) a^{i}=0$.)

Now to proceed with the proof of Minkowski's Existence and Uniqueness Theorem, we consider the optimization problem

$$
\begin{aligned}
\operatorname{minimize} \phi(b) & := \\
\text { subject to } & \sum_{i=1}^{n} \alpha_{i} b_{i} \\
& b \in \mathcal{M}_{A}
\end{aligned}
$$

Here we minimize a linear function over a closed convex set. One can check that the minimum exists, is positive, and is assumed at a point B^{*} that is unique up to translation of the polytope $P_{A}(b)$ (as $\mathcal{M}_{A} / \operatorname{im}(A)$ is strictly convex).
At the point b^{*}, we know that the gradient of the volume function $\operatorname{vol}\left(P_{A}(b)\right)$ coincides with linear function we are trying to minimize. From this we get that b^{*} lies on the hyperplane

$$
\frac{1}{d} \sum_{i} \operatorname{vol}\left(F_{i}\left(b^{*}\right)\right) y_{i}=1
$$

as it lies on the support hyperplane of \mathcal{M}_{A} at the point b^{*}, and it lies on the hyperplane

$$
\frac{1}{d} \sum_{i} \alpha_{i} y_{i}=\phi_{\min }
$$

by construction, where the normal vectors to the hyperplanes must be multiples of each other. From this we see that

$$
\operatorname{vol}\left(F_{i}\left(P_{A}\left(b^{*}\right)\right)\right)=\frac{\alpha_{i}}{\phi_{\min }}
$$

holds for all i. This yields that

$$
P_{A}\left(\frac{1}{\sqrt[d]{\phi_{\text {min }}}}\right)
$$

is the polytope we were looking for, to complete the proof of Minkowski's Existence and Uniqueness Theorem.

Note: this is constructive "in principle."
Applications, for example: If all polytopes in a dissection $P=P_{1} \cup \cdots \cup P_{m}$ are centrally symmetric, then so is P.

3.4 Application: Sorting partially ordered sets

Definition 3.13. (X, \preceq) a finite partially ordered set, then $e(X, \preceq)$ is the number of linear extensions of (X, \preceq).

Clearly $1 \leq e(X, \preceq) \leq n!$, with equality for a linear order (also known as chain or total order) resp. for an anorderd set (antichain).
Theorem 3.14 (Efficient comparison theorem). Let (X, \preceq) be a finite partial order that is not linear. Then there are elements $a, b \in X$ such that

$$
\delta \leq \frac{e(X, \preceq+(a, b))}{e(X, \preceq)} \leq 1-\delta,
$$

where δ is a constant.
Here $e(X, \preceq+(a, b))$ denotes the partial ordering we obtain from $e(X, \preceq)$ if we are given the additional information that $a \leq b$.
We will sketch a proof by Kahl \& Linial (1991) which yields this for $\delta=\frac{1}{2 e} \approx 0.1840$.
The original proof by Kahn \& Sachs (1984) yielded $\delta=\frac{3}{11} \approx 0.2727$.
The current best bound by Brightwell, Felsner \& Trotter (1995) is $\ldots \ldots . \delta=\frac{5-\sqrt{5}}{10} \approx 0.2764$.
The conjecture is that this should be true for $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. which would be optimal. See: Matoušek [3, Sect. 12.3].
Remark 3.15 (The complexity of sorting a partially ordered set). If we are supposed to sort a partially ordered set by pairwise comparisons, that is, find the unknown linear order from partial data by queries to a comparison oracle, the worst case complexity is certainly at least $\log _{2} e(X, \preceq)$. For example, this yields the well-known lower bound of $\log _{2} n \approx n \log _{2} n$ for sorting without previous information.
The "efficient comparison theorem" yields an upper bound: If we choose our comparisons judiciously, $\log _{1 /(1-\delta)} e(X, \preceq)$ steps will be enough.

Definition 3.16. For a given partial order (X, \preceq) on a set X of size n, which for simplicity we identify with $\{1, \ldots, n\}$, the order polytope is

$$
P(X, \preceq):=\left\{x \in[0,1]^{n}: x_{a} \leq x_{b} \text { for all } a, b \in X \text { with } a \preceq b\right\} .
$$

Lemma 3.17. The number of vertices of $P(X, \preceq)$ is the number of order ideals (a.k.a. downsets) of (X, \preceq). Indeed, the vertices are the characteristic vectors of the dual order ideals (a.k.a. up-sets) of (X, \preceq).
The volume of $P(X, \preceq)$ is $\frac{1}{n!} e(X, \preceq)$.
Proof. $P(X, \preceq)$ has a canonical triangulation into simplices of determinant 1 (that is, volume $\frac{1}{n!}$) corresponding to the linear extensions.

Definition 3.18 (height). Let X be a finite set and $a \in X$.
For a linear ordering (X, \leq), the height of a in (X, \leq) is defined as the number of elements below $a, h_{\leq}(a):=|\{x \in X: x \leq a\}|$.
For a partial ordering (X, \preceq), the height of a in (X, \preceq) is definied as the average number of elements below a in the linear extensions of (X, \preceq), that is,

$$
h_{\preceq}(a):=\frac{1}{e(X, \preceq)} \sum_{\leq \in E(X, \preceq)} h_{\leq}(a) .
$$

Lemma 3.19. For any poset (X, \preceq) on an n-element set X, the center of gravity of its order polytope $P(X, \preceq)$ has the coordinates $c_{a}=\frac{1}{n+1} h_{\preceq}(a)$.

Proof. The center is the average of the centers of the simplices in the triangulation.
Proof of the Efficient Comparison Theorem 3.14
(1) Pick elements $a \neq b$ in X with $\left|h_{\preceq}(a)-h_{\preceq}(b)\right|<1$. In particular, a and b are not comparable in \preceq. If (X, \preceq) is not a linear order, these exist (Exercise!)
We want to show that (a, b) solves the problem. For this we have to show that the hyperplane $x_{a}=x_{b}$ splits the polytope $P(X, \leq)$ into two parts that each have a constant fraction of the volume of the whole polytope.
(2) Choose a new orthonormal coordinate system y_{1}, \ldots, y_{n}, where $y_{1}=x_{a}-x_{b}$.
(Note: The coordinate transformation can be obtained by an orthogonal transformation followed by a rescaling by factor $\frac{1}{2} \sqrt{2}$.)
In these new coordinates, the splitting hyperplane is given by $y_{1}=0$. The polytope $P=$ $P(X, \preceq)$ in these new coordinates has two properties:

- The projection of P to the first coordinate is $[-1,1]$.
(There are vertices corresponding to up-sets that contain a but not b, and the other way around.)
- The center of gravity satisfies $-\frac{1}{n+1}<c_{1}<\frac{1}{n+1}$.
(Indeed, $c_{1}=\frac{1}{n+1}\left(h_{\preceq}(b)-h_{\preceq}(a)\right)$ with $\left.\left|h_{\preceq}(a)-h_{\preceq}(b)\right|<1\right)$
We want to show that these two properties already imply what we need, namely every convex body with these two properties satisfies $\operatorname{vol}\left(P_{y_{1} \geq 0}\right) \geq \frac{1}{2 e} \operatorname{vol}(P)$ and $\operatorname{vol}\left(P_{y_{1} \leq 0}\right) \geq \frac{1}{2 e} \operatorname{vol}(P)$.
(3) The y_{1}-coordinate of the center of gravity is given by the volume of the slices by

$$
c_{1}(P)=\frac{1}{\operatorname{vol}(P)} \int_{-1}^{1} t \operatorname{vol}_{n-1}\left(P_{t}\right) \mathrm{d} t
$$

Thus we can replace P by a rotationally symmetric convex body R with the same properties and with the same center of gravity, given by the radius function $r(t)$. By Brunn's Slice Inequality (Theorem 3.5), the function $r(t)$ is convex, and thus the resulting body R is convex.
(4) Replace R by a double cone K, determined by radius function $\kappa(t)$, with the following properties

- $\operatorname{vol}\left(K_{\geq 0}\right)=\operatorname{vol}\left(R_{\geq 0}\right)$, while the center of gravity of $R_{\geq 0}$ moves to the right, if at all ("move mass".)
- $\operatorname{vol}\left(K_{\leq 0}\right)=\operatorname{vol}\left(R_{\leq 0}\right)$, while the center of gravity of $R_{\geq 0}$ moves to the right, if at all ("move mass".)

(5) Computations for the double cone K : It is determined by the y_{1}-coordinate of the "base," called $-\Delta$, and by the heights $h_{1}=1-\Delta$ and $h_{2}=u+\Delta \geq 1+\Delta$.
The barycenter is computed to satisfy $c_{1}(K)=\frac{h_{2}-h_{1}}{n+1}-\Delta$, which yields $\frac{u}{h_{2}} \geq 1-\frac{1}{n}$.
And from this we get the volume estimate

$$
\begin{aligned}
\operatorname{vol}\left(K_{\geq 0}\right) & =\frac{u}{u+1}\left(\frac{u}{h_{2}}\right)^{n} \operatorname{vol}\left(K_{2}\right) \\
& =\frac{u}{u+1}\left(\frac{u}{h_{2}}\right)^{n} \frac{h_{2}}{h_{1}+h_{2}} \operatorname{vol}(K) \\
& \geq \frac{u}{u+1}\left(1-\frac{1}{n}\right)^{n-1} \operatorname{vol}(K) \geq \frac{2 e}{\operatorname{vol}}(K) .
\end{aligned}
$$

See Matoušek [3, Sect. 12.3] for details.

3.5 Mixed subdivisions and Mixed volumes

Definition 3.20. Let again $A \in \mathbb{R}^{n \times d}$ have disjoint rows of length 1 and let $b \in \mathbb{R}^{n}$.
The closed inner region $\mathcal{B}_{A}^{\circ} \subseteq \mathcal{B}_{A}$ is the set of all right-hand sides b such that all inequalities define a non-empty face:

$$
\mathcal{B}_{A}^{\circ}=\left\{b \in \mathbb{R}^{n}: P_{A}(b) \cap\left\{x \in \mathbb{R}^{d}: a_{i}^{t} x=b_{i}\right\} \neq \emptyset \text { for all } i\right\} .
$$

Note that \mathcal{B}_{A}° is a closed polyhedral cone again! In the following for a polyhedron $P \subseteq \mathbb{R}^{d}$ and a vector $c \in \mathbb{R}^{d}$, the expression P^{c} denotes the face of P in direction of c.

Definition 3.21. Define $P \leq_{w} Q$ if $\operatorname{dim} P^{c} \leq \operatorname{dim} Q^{c}$ for all $c \in \mathbb{R}^{d}$.
Define $P \sim_{w} Q$ if $\operatorname{dim} P^{c}=\operatorname{dim} Q^{c}$ for all $c \in \mathbb{R}^{d}$.
In the latter case, P and Q are called normally equivalent.
The type cone of b is

$$
\mathcal{T}_{A}(b):=\left\{b^{\prime} \in \mathbb{R}^{d}: P_{A}\left(b^{\prime}\right) \sim_{w} P_{A}(b)\right\}
$$

Its closure is called the closed type cone of b.
Proposition 3.22. The type cone $\mathcal{T}_{A}(b)$ is a relatively open polyhedral cone.
Thus the closure of the type cone $\mathcal{T}_{A}(b)$ is a polyhedral cone.
The type cones define a polyhedral subdivision of \mathcal{B}_{A}°.
Its maximal cells correspond to the types of simple polytopes $P_{A}(b)$ for which each a_{i} defines a facet.
Proposition 3.23. $P \leq_{w} Q$ holds if and only if $\lambda Q=P+R$ for some $\lambda>0$ and a polytope R. $P_{A}\left(b^{\prime}+b^{\prime \prime}\right)=P_{A}\left(b^{\prime}\right)+P_{A}\left(b^{\prime \prime}\right)$ holds if and only if b^{\prime} and $b^{\prime \prime}$ lie in the same closed type cone.

Corollary 3.24. Restricted to a type cone $\mathcal{T}_{A}(b)$, the volume function is given in the form

$$
\operatorname{vol}\left(P_{A}(b)\right)=\operatorname{vol}\left(\lambda_{1} P_{1}+\cdots+\lambda_{n} P_{n}\right)
$$

where P_{i} span the rays of the type cone $\mathcal{T}_{A}(b) / \mathrm{im}(A)$.
Theorem 3.25 (Minkowski's Theorem). If $K_{1}, \ldots, K_{n} \subseteq \mathbb{R}^{d}$ are compact convex sets, then for $\lambda_{1}, \ldots, \lambda_{n} \geq 0$

$$
\operatorname{vol}\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right)
$$

is a homogeneous polynomial of degree d.
Notation:

- $r:=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}_{0}^{n}$,
- $|r|:=r_{1}+\cdots+r_{n}$,
- $\mathbb{N}_{0}^{n}(d):=\left\{r \in N_{0}^{n}:|r|=d\right\}$,
- $\lambda^{r}:=\lambda_{1}^{r_{1}} \cdots \lambda_{n}^{r_{n}}$.

With this notation, the homogeneous polynomial of degree d in Minkowski's theorem can compactly be written as

$$
V\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{vol}\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right)=\sum_{r \in \mathbb{N}_{0}^{n}(d)} c_{r} \lambda^{r}
$$

Proof. We proceed in three steps.
(1) It suffices to prove the theorem for the case when the K_{i} are convex polytopes. For this, we can use the following convergence result:
If f_{1}, f_{2}, \ldots are homogeneous polynomials of degree d in n variables, and $\lim _{s \rightarrow \infty} f_{s}(\lambda)=f(\lambda)$ for all $\lambda \geq 0$, then $f\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is also a homogeneous polynomial of degree d.
Thus we can approximate the K_{i} by polytopes P_{i} better and better and use continuity.
(2) If the Minkowski sum is a direct sum ("the Minkowski sum is exact"),

$$
\operatorname{dim}\left(P_{1}+\cdots+P_{n}\right)=\operatorname{dim}\left(P_{1}\right)+\cdots+\operatorname{dim}\left(P_{n}\right)
$$

then

$$
\operatorname{vol}\left(\lambda_{1} P_{1}+\cdots+\lambda_{n} P_{n}\right)=\prod_{i=1}^{n} \lambda_{i}^{\operatorname{dim}\left(P_{i}\right)} \operatorname{vol}\left(P_{1}+\cdots+P_{n}\right)
$$

(3) To prove this part, we use "exact mixed subdivisions."

Notation:

- $P_{i}=\operatorname{conv}\left(V_{i}\right)$ for a finite set V_{i},
- $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \subset V_{i}$,
- $\langle S\rangle:=\operatorname{conv}\left(S_{1}\right)+\cdots+\operatorname{conv}\left(S_{n}\right) \subseteq P_{1}+\cdots+P_{n}$,
- The type of S is $d(S)=\left(d_{1}, \ldots, d_{n}\right)=\left(\operatorname{dim} \operatorname{conv}\left(S_{1}\right), \ldots, \operatorname{dim} \operatorname{conv}\left(S_{n}\right)\right)$,
- $\lambda \cdot S:=\left(\lambda_{1} S_{1} \ldots, \lambda_{n} S_{n}\right)$,
- so $\langle\lambda \cdot S\rangle=\lambda_{1} \operatorname{conv}\left(S_{1}\right)+\cdots+\lambda_{n} \operatorname{conv}\left(S_{n}\right)$.

Definition 3.26. A mixed subdivision of $P=P_{1}+\cdots+P_{n}$ is a collection $\mathcal{S} \subseteq 2^{V_{1}} \times \cdots \times 2^{V_{n}}=$ $\left\{\left(S_{1}, \ldots, S_{n}\right): S_{i} \subseteq V_{i}\right\}$ if the polytopes

$$
\langle S\rangle=\operatorname{conv}\left(S_{1}\right)+\cdots+\operatorname{conv}\left(S_{n}\right) \quad \text { for } S \in \mathcal{S}
$$

form a subdivision of P.
In this subdivision, we also require that "faces fit together", that is, that $\langle S\rangle \cap\left\langle S^{\prime}\right\rangle$ is of the form $\langle T\rangle$, there each $\operatorname{conv}\left(T_{i}\right)$ is a face of both S_{i} and S_{i}^{\prime}.
The subdivision is exact if $\langle S\rangle$ is exact for all $S \in \mathcal{S}$.
It is called fine if it is exact and additionally the $\operatorname{conv}\left(S_{i}\right)$ are simplices with vertex set S_{i}.
Thus a mixed subdivision of $P=P_{1}+\cdots+P_{n}$ consists of pieces of the form $F_{1}+\cdots+F_{n}$ for $F_{i}=\operatorname{conv}\left(S_{i}\right)$ and $S_{i} \subseteq V_{i}$ with $\operatorname{conv}\left(V_{i}\right)=P_{i}$.
Examples! Examples:

- not mixed, not exact
- mixed, not exact
- not mixed, exact
- mixed, exact.

Now if we assume that we have an exact mixed subdivision \mathcal{S} of $P=P_{1}+\cdots+P_{n}$, and $\lambda_{1}, \ldots, \lambda_{n}>0$, then also $\lambda \cdot \mathcal{S}$ is a mixed subdivision of $\lambda_{1} P_{1}+\cdots+\lambda_{n} P_{n}$ (check this: This uses the "faces fit together"-condition!).

Thus we get that

$$
\operatorname{vol}\left(\lambda_{1} P_{1}+\cdots+\lambda_{n} P_{n}\right)=\sum_{\substack{S \in \mathcal{S} \\ \operatorname{dim}\langle S\rangle=d}} \operatorname{vol}_{d}(\langle\lambda \cdot S\rangle)=\sum_{\substack{S \in \mathcal{S} \\ \operatorname{dim}\langle S\rangle=d}} \lambda^{d(S)} \operatorname{vol}_{d}(\langle S\rangle) .
$$

This also holds for $\lambda \geq 0$ by continuity. This completes the proof of Minkowski's theorem, modulo existence of mixed subdivision.

Definition 3.27 (The Cayley embedding). For polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{d}$ the Cayley embedding is

$$
C\left(P_{1}, \ldots, P_{n}\right):=\operatorname{conv}\left(P_{1} \times\left\{e_{1}\right\}, \ldots, P_{n} \times\left\{e_{n}\right\}\right) \subset \mathbb{R}^{d \times n}
$$

In particular, if $V_{i} \subseteq P_{i}$ are finite subsets with $\operatorname{conv}\left(V_{i}\right)=P_{i}$, this defines a subset $V\left(V_{1}, \ldots, V_{n}\right) \subseteq$ $C\left(P_{1}, \ldots, P_{n}\right)$ by

$$
V\left(P_{1}, \ldots, P_{n}\right):=\left(V_{1} \times\left\{e_{1}\right\}\right) \cup \cdots \cup\left(P_{n} \times\left\{e_{n}\right\}\right) \subseteq C\left(P_{1}, \ldots, P_{n}\right)
$$

with $\operatorname{conv} V\left(P_{1}, \ldots, P_{n}\right)=C\left(P_{1}, \ldots, P_{n}\right)$.
Theorem 3.28 (The Cayley trick). Let $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{d}$ be polytopes, then
(i) the mixed subdivisions of $P_{1}+\cdots+P_{n}$ are in bijection with the subdivisions of $C\left(P_{1}, \ldots, P_{n}\right)$ with vertex set contained in $V\left(P_{1}, \ldots, P_{n}\right)$,
(ii) the fine mixed subdivisions of $P_{1}+\cdots+P_{n}$ are in bijection with the triangulations of $C\left(P_{1}, \ldots, P_{n}\right)$ with vertex set $V\left(P_{1}, \ldots, P_{n}\right)$.
In particular, as such triangulations of $C\left(P_{1}, \ldots, P_{n}\right)$ exist, there are fine (and hence exact) mixed subdivisions of $P_{1}+\cdots+P_{n}$.

Proof. We do not provide the proof here, but refer to De Loera et al. [2]. Note that the "easy" part is to verify that
(i) subdivisions of the Cayley polytope give mixed subdivisions of the (rescaled) Minkowski sum $\frac{1}{n} P_{1}+\cdots+\frac{1}{n} P_{n}$,
(ii) triangulations of the Cayley polytope give mixed subdivisions of the (rescaled) Minkowski sum,
as they "give" this plainly by intersection of $C\left(P_{1}, \ldots, P_{n}\right)$ with the subspace $H_{\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)}:=$ $\mathbb{R}^{d} \times\left\{\left(\frac{1}{n}, \ldots, \frac{1}{n}\right\}\right.$ - and this "easy" part is exactly what we need to complete the proof of Minkowski’s theorem.

3.6 The mixed volumes

Definition 3.29 (Mixed volume). Let $K_{1}, \ldots, K_{d} \subset \mathbb{R}^{d}$ be nonempty compact convex sets. The mixed volume $\operatorname{MV}\left(K_{1}, \ldots, K_{d}\right)$ of K_{1}, \ldots, K_{d} is defined as the coefficient of $\lambda_{1} \cdots \lambda_{d}$ in the polynomial $\operatorname{vol}_{d}\left(\lambda_{1} K_{1}+\cdots+\lambda_{d} K_{d}\right)$, that is, by

$$
\operatorname{MV}\left(K_{1}, \ldots, K_{d}\right)=\frac{\partial^{d}}{\partial \lambda_{1} \cdots \partial \lambda_{d}} \operatorname{vol}_{d}\left(\lambda_{1} K_{1}+\cdots+\lambda_{d} K_{d}\right) .
$$

The mixed volume $\operatorname{MV}\left(K_{1}, \ldots, K_{d}\right)$ of K_{1}, \ldots, K_{d} is 0 if $\operatorname{dim}\left(K_{1}+\cdots+K_{d}\right)<d$.
Proposition 3.30 (Properties of the mixed volume). Let $K_{1}, \ldots, K_{d} \subset \mathbb{R}^{d}$ be compact convex sets with $\operatorname{dim}\left(K_{1}+\cdots+K_{d}\right)=d$.
(i) $\operatorname{MV}\left(K_{1}, \ldots, K_{d}\right)$ is symmetric in the arguments.
(ii) MV : $\mathcal{K}_{d} \times \cdots \times \mathcal{K}_{d} \rightarrow \mathbb{R}$ is continuous (in the space \mathcal{K}_{d} of compact convex sets with a suitable metric, to be detailed later)
(iii) $\operatorname{MV}\left(K_{1}, \ldots, K_{d}\right) \geq 0$.
(iv) $\operatorname{MV}(K, \ldots, K)=d!\operatorname{vol}_{d}(K)$.
(v) MV is invariant under rigid motions T.

Proof. (i) clear by definition.
(ii) approximation: volume is continuous.
(iii) approximate by polytopes, then note that MV is given by volumes of pieces in an exact mixed subdivision.
(iv) compute: $\operatorname{vol}_{d}\left(\lambda_{1} K+\cdots+\lambda_{d} K\right)=\left(\lambda_{1}+\cdots+\lambda_{d}\right)^{d} \operatorname{vol}_{d}(K)$.
(v) clear by definition.

Definition 3.31 (Mixed volumes with multiplicities). Let $K_{1}, \ldots, K_{n} \subset \mathbb{R}^{d}$ be compact convex sets with $\operatorname{dim}\left(K_{1}+\cdots+K_{n}\right)=d$ and $r_{1}, \ldots, r_{n} \in \mathbb{N}_{0}$ with $r_{1}+\cdots+r_{n}=d$. Then

$$
\operatorname{MV}\left(K_{1}\left[r_{1}\right], \ldots, K_{n}\left[r_{n}\right]\right):=\operatorname{MV}(\underbrace{K_{1}, \ldots, K_{1}}_{r_{1}}, \ldots, \underbrace{K_{n}, \ldots, K_{n}}_{r_{n}}) .
$$

Proposition 3.32 (The coefficients of the Minkowski polynomial are mixed volumes with multiplicities). For $K_{1}, \ldots, K_{n} \subset \mathbb{R}^{d}$ be compact convex sets with $\operatorname{dim}\left(K_{1}+\cdots+K_{n}\right)=d$,

$$
\operatorname{vol}_{d}\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right)=\sum_{r \in \mathbb{N}_{0}^{n}(d)} \operatorname{MV}\left(K_{1}\left[r_{1}\right], \ldots, K_{n}\left[r_{n}\right]\right) \lambda_{1}^{r_{1}} \cdots \lambda_{n}^{r_{1}}
$$

Proof. For the n compact convex sets $K_{1}, \ldots, K_{n} \subset \mathbb{R}^{d}$ let the Minkowski polynomial vol ${ }_{d}\left(\lambda_{1} K_{1}+\right.$ $\cdots+\lambda_{n} K_{n}$) of degree d be $\sum_{r} c_{r} \lambda^{r}$. The coefficient c_{r} of $\lambda^{r}=\lambda_{1}^{r_{1}} \cdots \lambda_{n}^{r_{1}}$ in this polynomial can be obtained as

$$
\frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial^{r_{1}} \lambda_{1} \cdots \partial^{r_{n}} \lambda_{n}} \operatorname{vol}_{d}\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right)=r_{1}!\cdots r_{n}!c_{r} .
$$

If on the other hand, let us take r_{i} copies of each K_{i}, and consider the resulting $r_{1}+\cdots+r_{n}=d$ convex sets (with multiplicities). Their Minkowski polynomial is

$$
\operatorname{vol}_{d}\left(\lambda_{11} K_{1}+\cdots+\lambda_{1 r_{1}} K_{1}+\cdots+\lambda_{n 1} K_{n}+\cdots+\lambda_{n r_{n}} K_{n}\right)
$$

and the coefficient of $\lambda_{11} \cdots \lambda_{1 r_{1}} \cdots \lambda_{n 1} \cdots \lambda_{n r_{n}}$ in this polynomial is the mixed volume $\operatorname{MV}\left(K_{1}\left[r_{1}\right], \ldots, K_{r}\right.$ by definition. On the other hand we can compute the Minkowski polynomial as

$$
\begin{aligned}
& \operatorname{vol}_{d}\left(\lambda_{11} K_{1}+\cdots+\lambda_{1 r_{1}} K_{1}+\cdots+\lambda_{n 1} K_{n}+\cdots+\lambda_{n r_{n}} K_{n}\right) \\
= & \operatorname{vol}_{d}\left(\left(\lambda_{11}+\cdots+\lambda_{1 r_{1}}\right) K_{1}+\cdots+\left(\lambda_{n 1}+\cdots+\lambda_{n r_{n}}\right) K_{n}\right) . \\
= & \sum_{r \in \mathbb{N}_{0}^{n}(d)} c_{r}\left(\lambda_{11}+\cdots+\lambda_{1 r_{1}}\right)^{r_{1}} \cdots\left(\lambda_{n 1}+\cdots+\lambda_{n r_{n}}\right)^{r_{n}}
\end{aligned}
$$

And the coefficient of $\lambda_{11} \cdots \lambda_{1 r_{1}} \cdots \lambda_{n 1} \cdots \lambda_{n r_{n}}$ in this polynomial is clearly also $r_{1}!\cdots r_{n}!c_{r}$.

Corollary 3.33 (Multilinearity of mixed volumes). For $\alpha, \beta \geq 0$, and compact convex sets $K_{1}^{\prime}, K_{1}^{\prime \prime}, K_{2}, \ldots, K_{d}$,

$$
\operatorname{MV}\left(\alpha K_{1}^{\prime}+\beta K_{1}^{\prime \prime}, K_{2}, \ldots, K_{d}\right)=\alpha \operatorname{MV}\left(K_{1}^{\prime}, K_{2}, \ldots, K_{d}\right)+\beta \operatorname{MV}\left(K_{1}^{\prime \prime}, K_{2}, \ldots, K_{d}\right)
$$

Proof. Exercise?
Corollary 3.34 (Mixed volumes are valuations). For K_{2}, \ldots, K_{d} compact convex sets, the function

$$
K \mapsto \operatorname{MV}\left(K, K_{2}, \ldots, K_{d}\right)
$$

on compact convex sets is a valuation, that is,
$\operatorname{MV}\left(K, K_{2}, \ldots, K_{d}\right)+\operatorname{MV}\left(L, K_{2}, \ldots, K_{d}\right)=\operatorname{MV}\left(K \cap L, K_{2}, \ldots, K_{d}\right)+\mathrm{MV}\left(K \cup L, K_{2}, \ldots, K_{d}\right)$ whenever $K \cup L$ convex.

