

Prof. Pavle Blagojević

Albert Haase

Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 1

Date of assignment: **Wednesday, Oct. 15, 2014**. We highly recommend problems marked with a star. Do the other exercises if they seem challenging enough or if you don't have an idea of how to solve them immediately.

Exercise 1: Subgroups of Free Abelian Groups

Show that any subgroup of a free abelian group is itself a free abelian group. Also, recall the fundamental difference between "free group" and "free abelian group" and choose a set S such that the free group generated by S and the free abelian group generated by S are non-isomorphic.

Exercise 2: Cyclic Groups and Fundamental Theorem

Recall the Fundamental Theorem of Finitely Generated Abelian Groups as stated in the tutorial:

Given a finitely generated abelian group G, there exists a decomposition $G \cong H \oplus T$, where T denotes the torsion subgroup of G and H denotes a free abelian group of finite rank β . Furthermore, $T \cong \mathbb{Z}/t_1 \oplus \mathbb{Z}/t_2 \oplus \cdots \oplus \mathbb{Z}/t_k$ for $t_i \in \mathbb{Z}_{>1}$ such that $t_1|t_2|\ldots|t_k$ (successively divide). The t_i and β are uniquely determined by G.

- (a) Show that $\mathbb{Z}/m \oplus \mathbb{Z}/n \cong \mathbb{Z}/mn$ if and only if m and n are coprime.
- (b) For the following finitely generated abelian groups, calculate their decomposition according to the above theorem.
 - (i) $\mathbb{Z}/2 \oplus \mathbb{Z}/5 \oplus \mathbb{Z} \oplus \mathbb{Z}/2$.
 - (ii) $\mathbb{Z}/5 \oplus \mathbb{Z}/8 \oplus \mathbb{Z}/9$.
 - (iii) $\mathbb{Z}/5 \oplus \mathbb{Z}/8 \oplus \mathbb{Z}/9 \oplus \mathbb{Z}/2$.

¹See J. Munkres, *Elements of Algebraic Topology*, Ch. 1 Sec. 4 Th. 4.3. This section also explains the algebraic backround.

Exercise 3: Definition of Categories

- (a) Let \mathcal{C} be a category and let $A \in \text{obj } \mathcal{C}$. Prove that hom(A, A) has a unique identity 1_A .
- (b) If \mathcal{C}' is a subcategory of \mathcal{C} and if $A \in \text{obj } \mathcal{C}'$, then the identity in $\text{hom}_{\mathcal{C}'}(A, A)$ is equal to the identity in $\text{hom}_{\mathcal{C}}(A, A)$.

*Exercise 4: Examples of Categories

- (a) Let G be a monoid (with a neutral element). Show that the following construction gives a category C. Let $\text{obj } C = \{*\}$, hence consist of one element. Define hom(*,*) = G and define the composition by group multiplication. This example shows that morphisms need not be functions.
- (b) Given a category \mathcal{C} , show that the following construction gives a category \mathcal{M} , called a *morphism category*. The objects of \mathcal{M} are the morphisms of \mathcal{C} . Next, if $f, g \in \text{obj } \mathcal{M}$ such that $f \in \text{hom}(A, B)$ and $g \in \text{hom}(C, D)$, then a morphism in hom(f, g) is a pair (h, k) of morphisms in \mathcal{C} such that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow h & & \downarrow k \\
C & \xrightarrow{g} & D
\end{array}$$

- (c) is well-defined and commutes. Define the composition coordinate-wise, that is, $(h', k') \circ (h, k) = (h' \circ h, k' \circ k)$.
- (d) Let G be a group and let \mathcal{C} be the category associated to it in part (a). If H is a normal subgroup of G, define a relation by $x \sim y$ if and only if $xy^{-1} \in H$. Show that \sim leads to an equivalence on the category \mathcal{C} and that for the corresponding quotient category \mathcal{C}' we have [*,*] = G/H.

*Exercise 5: Examples of Functors

- (a) Given a category \mathcal{C} , prove that for a fixed object $M \in \text{obj } \mathcal{C}$, the mapping that sends $A \in \text{obj } \mathcal{C}$ to Hom(M, A) = hom(M, A) respectively Hom(A, M) = hom(A, M) is a covariant respectively contravariant functor from \mathcal{C} to the category **Sets**. To prove this, first define $f \longmapsto \text{Hom}(M, f)$ and $f \longmapsto \text{Hom}(f, M)$ for $f \in \text{hom}_{\mathcal{C}}(A, B)$ and $A, B \in \text{obj } \mathcal{C}$ in a suitable way.
- (b) In the above setting for $\mathcal{C} = \mathbf{Groups}$ and $C \in \mathcal{C}$ and $g \in \mathrm{hom}_{\mathcal{C}}(B, C)$, let

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0.$$

be an exact sequence² of groups. In the following we assume that both Homfunctors are functors from **Groups** to **Groups**. In order to speak of exact sequences we need the target category to be a so-called *abelian category*. Show that

- (i) $0 \longrightarrow \operatorname{Hom}(M, A) \xrightarrow{\operatorname{Hom}(M, f)} \operatorname{Hom}(M, B) \xrightarrow{\operatorname{Hom}(M, g)} \operatorname{Hom}(M, C)$ is exact.
- (ii) $\operatorname{Hom}(A, M) \underset{\operatorname{Hom}(f, M)}{\longleftarrow} \operatorname{Hom}(B, M) \underset{\operatorname{Hom}(g, M)}{\longleftarrow} \operatorname{Hom}(C, M) \longleftarrow 0$ is exact.

Note that the above shows that both Hom-functors are *left-exact*.

- (c) For an abelian group G let T_G be its torsion subgroup.
 - (i) Show that $G \stackrel{t}{\longmapsto} T_G$ defines a functor from $\mathbf{Ab} \longrightarrow \mathbf{Ab}$ if we define $t(f) := f|_{T_G}$ (restriction) for every $f \in \text{hom}(G, H)$ for $G, H \in \mathbf{Ab}$.
 - (ii) Show that if f is injective, then t(f) is injective. Phrase this in terms of "exactness of funtors".
 - (iii) Show that f surjective does not imply t(f) surjective. Phrase this in terms of "exactness of funtors".

²If "kernel" and "image" are well-defined in a category, then an *exact sequence* in that category is a sequence of objects and morphisms such that for each morphism its image is equal to the kernel of the next morphism.