

Prof. Pavle Blagojević

Albert Haase

Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 1

Date of assignment: Wednesday, Oct. 15, 2014.

*Exercise 4: Examples of Categories

(a) Let G be a monoid (with a neutral element). Show that the following construction gives a category C. Let $\text{obj } C = \{*\}$, hence consist of one element. Define hom(*,*) = G and define the composition by group multiplication. This example shows that morphisms need not be functions.

Solution:

- We have a class of homomorphisms for every object (there is only the object *) and a composition law defined by the group-operation.
- The families of homomorphisms are clearly pairwise disjoint, since there is only one such family.
- The composition law is associative, since the group-operation is associative.
- The identity morphism $\mathbb{1}_*$ in hom(*,*) is given by the neutral element $e \in G$ since it satisfies eg = ge for all $g \in G = hom(*,*)$.
- (b) Given a category \mathcal{C} , show that the following construction gives a category \mathcal{M} , called a *morphism category*. The objects of \mathcal{M} are the morphisms of \mathcal{C} . Next, if $f, g \in \text{obj } \mathcal{M}$ such that $f \in \text{hom}(A, B)$ and $g \in \text{hom}(C, D)$, then a morphism in hom(f, g) is a pair (h, k) of morphisms in \mathcal{C} such that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow h & & \downarrow k \\
C & \xrightarrow{g} & D
\end{array}$$

is well-defined and commutes. Define the composition coordinate-wise, that is, $(h', k') \circ (h, k) = (h' \circ h, k' \circ k)$.

Solution:

- We have a set of morphisms for every object and a composition law for any two morphisms (as defined on the sheet).
- We regard a morphism (h, k) together with its "source", and "target". In other words: if $(h, k) \in \text{hom}_{\mathcal{M}}(f, g)$, then as in the case of the category \mathcal{C} , (h, k) is not only given by the objects A, B, C, D and \mathcal{C} -morphisms h, k, but also by the source object f and the target object g. The fact that the morphism-classes in \mathcal{M} are disjoint follows immediately from this fact.
- \circ The composition law in \mathcal{M} is associative, since the composition law in \mathcal{C} is associative.
- Given an object $f \in \text{obj}(\mathcal{M})$ with $f \in \text{hom}_{\mathcal{C}}(A, B)$ the identity in $\text{hom}_{\mathcal{M}}(f, f)$ is given by $\text{id}_f := (\text{id}_{A,A}, \text{id}_{B,B})$, where $\text{id}_{A,A} \in \text{hom}_{\mathcal{C}}(A, A)$ is the identity.
- o Given $f \in \operatorname{obj}(\mathcal{M})$ such that $f \in \operatorname{hom}_{\mathcal{C}}(A, B)$, then $\operatorname{id}_f \circ (h, k) = (\operatorname{id}_A \circ h, \operatorname{id}_B \circ k) = (h, k)$ for all $(h, k) \in \operatorname{hom}(e, f)$ and all $e \in \operatorname{obj}(\mathcal{M})$. And $(h', k') \circ \operatorname{id}_f = (h' \circ \operatorname{id}_A, k' \circ \operatorname{id}_B) = (h', k')$ for every $(h', k') \in \operatorname{hom}(f, g)$ and all $g \in \operatorname{obj}(\mathcal{M})$.
- (c) Let G be a group and let \mathcal{C} be the category associated to it in part (a). If H is a normal subgroup of G, define a relation by $x \sim y$ if and only if $xy^{-1} \in H$. Show that \sim leads to an equivalence on the category \mathcal{C} and that for the corresponding quotient category \mathcal{C}' we have [*,*] = G/H.

Solution:

- Let $f \in \text{hom}_{\mathcal{C}}(*,*)$ and $f \sim f'$, then $f' \in \text{hom}_{\mathcal{C}}(*,*)$, since there is only one set of morphisms.
- Let $f \sim f'$ and $g \sim g'$ and let gf exist. Then $(gf)(g'f')^{-1} = gff'^{-1}g'^{-1} \in H$ since $ff'^{-1} \in H$ and H is a normal subgroup of G.
- Next we will show that the set of morphisms [*,*] in \mathcal{C}' , the quotient category, is equal to G/H. By definition $[*,*] = \{[f] : f \in \hom_{\mathcal{C}}(*,*)\}$. The set on the right hand side is precisely the set of all cosets of H in G and hence [*,*] = G/H.

*Exercise 5: Examples of Functors

(a) Given a category \mathcal{C} , prove that for a fixed object $M \in \text{obj}\,\mathcal{C}$, the mapping that sends $A \in \text{obj}\,\mathcal{C}$ to Hom(M,A) = hom(M,A) respectively Hom(A,M) = hom(A,M) is a covariant respectively contravariant functor from \mathcal{C} to the category **Sets**. To prove this, first define $f \longmapsto \text{Hom}(M,f)$ and $f \longmapsto \text{Hom}(f,M)$ for $f \in \text{hom}_{\mathcal{C}}(A,B)$ and $A,B \in \text{obj}\,\mathcal{C}$ in a suitable way.

Solution of (a):

Let (C) be a category and let $M \in \text{obj}(C)$ be a fixed object.

Part 1: Show that $A \longmapsto \text{hom}(M, A)$ for $A \in \text{obj}(\mathcal{C})$ defines a covariant functor from \mathcal{C} to **Sets**.

- (i) If $A \in \text{obj}(\mathcal{C})$, then Hom(M, A) is a set by definition of the category \mathcal{C} .
- (ii) Given $f \in \text{hom}_{\mathcal{C}}(A, A')$ for $A, A' \in \text{obj}(\mathcal{C})$, define $\text{Hom}(M, f) \in \text{hom}_{\textbf{Sets}}(\text{Hom}_{\mathcal{C}}(M, A), \text{Hom}_{\mathcal{C}}(M, A'))$ by $\text{Hom}(M, f)(g) := f \circ g$ for $g \in \text{hom}_{\mathcal{C}}(M, A)$.
- (iii) Let $f \in \text{hom}_{\mathcal{C}}(A, B)$ and $f' \in \text{hom}_{\mathcal{C}}(B, C)$ for $A, B, C \in \text{obj}(\mathcal{C})$. Then: $\text{Hom}(M, f \circ f')(g) = (f' \circ f) \circ g = f' \circ (f \circ g) = \text{Hom}(M, f') \circ \text{Hom}(M, f)(g)$ for $g \in \text{hom}_{\mathcal{C}}(A, B)$
- (iv) Given $A \in \text{obj}(\mathcal{C})$, then $\text{Hom}(M, 1_A)(g) = 1_A \circ g = g$ for all $g \in \text{hom}_{\mathcal{C}}(A, A)$. Part 2: Show that $A \longmapsto \text{hom}(A, M)$ for $A \in \text{obj}(\mathcal{C})$ defines a contravariant functor from \mathcal{C} to **Sets**.
 - (i) If $A \in \text{obj}(\mathcal{C})$, then Hom(A, M) is a set by definition of the category \mathcal{C} .
 - (ii) Given $f \in \text{hom}_{\mathcal{C}}(A, A')$ for $A, A' \in \text{obj}(\mathcal{C})$, define $\text{Hom}(f, M) \in \text{hom}_{\textbf{Sets}}(\text{Hom}_{\mathcal{C}}(A', M), \text{Hom}_{\mathcal{C}}(A, M))$ by $\text{Hom}(f, M)(g) := g \circ f$ for $g \in \text{hom}_{\mathcal{C}}(A', M)$.
- (iii) as in Part 1 (iii) "with arrows reversed".
- (iv) as in Part 1 (iv) "with arrows reversed".
- (b) In the above setting for $\mathcal{C} = \mathbf{Groups}$ and $C \in \mathcal{C}$ and $q \in \mathrm{hom}_{\mathcal{C}}(B, C)$, let

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0.$$

be an exact sequence¹ of groups. In the following we assume that both Hom functors are functors from **Groups** to **Groups**. In order to speak of exact sequences we need the target category to be a so-called *abelian category*. Show

¹If "kernel" and "image" are well-defined in a category, then an *exact sequence* in that category is a sequence of objects and morphisms such that for each morphism its image is equal to the kernel of the next morphism.

that

- (i) $0 \longrightarrow \operatorname{Hom}(M, A) \xrightarrow{\operatorname{Hom}(M, f)} \operatorname{Hom}(M, B) \xrightarrow{\operatorname{Hom}(M, g)} \operatorname{Hom}(M, C)$ is exact.
- (ii) $\operatorname{Hom}(A, M) \xleftarrow{\operatorname{Hom}(f, M)} \operatorname{Hom}(B, M) \xleftarrow{\operatorname{Hom}(g, M)} \operatorname{Hom}(C, M) \xleftarrow{\operatorname{O}}$ is exact.

Note that the above shows that both Hom-functors are *left-exact*.

Solution of (b):

Proof of (i):

- (1) We first show that $\ker(\operatorname{Hom}(M, f))$ is trivial. Let $h \in \operatorname{Hom}(M, A)$ such that $\operatorname{Hom}(M, f)(h) = f \circ h = 0$. Assume that $h \neq 0$, then there is some $x \in M$ such that $h(x) \neq 0$. Hence f(g(x)) = 0 is contradicting that $\ker(f) = 0$.
- (2) We now show that $\operatorname{im}(\operatorname{Hom}(M, f)) = \ker(\operatorname{Hom}(M, g))$ holds.

" \subseteq ": Let $h \in \text{im}(\text{Hom}(M, f))$, then $h = f \circ h'$ for some $h' \in \text{Hom}(M, A)$. Hence $\text{Hom}(M, g)(h) = g \circ h = g \circ f \circ h' = 0$, by the exactness of

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0. \tag{*}$$

"\(\text{\text{"}}:\) Let $h' \in \ker(\operatorname{Hom}(M,g))$, then $\operatorname{Hom}(M,g)(h') = g \circ h' = 0$. Then g(h'(x)) = 0 for all $x \in M$. By the exactness of (*) choose for every $x \in M$ a $y \in A$ such that f(y) = h'(x). This defines a map $h : M \longrightarrow A$. It is a homomorphism because h' is a homomorphism. Also $\operatorname{Hom}(M,f)(h) = h'$.

Proof of (ii):

- (1) We first show that $\ker(\operatorname{Hom}(g, M))$ is trivial. So let $h \in \operatorname{Hom}(C, M)$ such that $\operatorname{Hom}(g, M)(h) = h \circ g = 0$. Assume that $h \neq 0$, then there is some $x \in C$ such that $h(x) \neq 0$. Hence h(g(x)) = 0 is contradicting that $\ker(g) = 0$.
- (2) We now show that $\operatorname{im}(\operatorname{Hom}(g, M)) = \ker(\operatorname{Hom}(f, M))$ holds.
- " \subseteq ": Let $h \in \text{im}(\text{Hom}(g, M))$, then $h = h' \circ g$ for some $h' \in \text{Hom}(C, M)$. Hence $\text{Hom}(f, M)(h) = h \circ f = h' \circ g \circ f = 0$ by the exactness of (*).
- "\(\text{\tensilon}\)": Let $h' \in \ker(\operatorname{Hom}(f, M))$, then $\operatorname{Hom}(f, M)(h') = h' \circ f = 0$. Then h'(f(x)) = 0 for all $x \in M$. By the exactness of (*) define the map $h : C \longrightarrow M$ as $h = h' \circ g^{-1}$. This h is a well-defined homomorphism since $\operatorname{im}(g) = \ker(0) = C$ and $\operatorname{Hom}(g, M)(h) = h' \circ g^{-1} \circ g = h'$ holds.
- (c) For an abelian group G let T_G be its torsion subgroup.
 - (i) Show that $G \stackrel{t}{\longmapsto} T_G$ defines a functor from $\mathbf{Ab} \longrightarrow \mathbf{Ab}$ if we define

- $t(f) := f|T_G \text{ (restriction) for every } f \in \text{hom}(G, H) \text{ for } G, H \in \mathbf{Ab}.$
- (ii) Show that if f is injective, then t(f) is injective. Phrase this in terms of "exactness of funtors".
- (iii) Show that f surjective does not imply t(f) surjective. Phrase this in terms of "exactness of funtors".

Solution of (c):

Part (i):

- Certainly T_G is an abelian group for any abelian group G.
- Let $f: G \longrightarrow G'$ be a homomorphism of groups, then $t(f) := f|_{G}$. Given an element $a \in T_G$, f will map it to an element of finite order, hence $f(a) \in T_{G'}$ and t(f) is well-defined.
- \circ Let $G \xrightarrow{f} G' \xrightarrow{g} G''$ be two homomorphisms of abelian groups, then $t(g \circ f) = t(g) \circ t(f)$ by associativity of the composition of group homomorphisms.
- Let G be an abelian group and id : $G \longrightarrow G$ be the identity on G, then $t(\mathrm{id}): T_G \longrightarrow T_G$ is the identity on T_G .

Part (ii):

- \circ Let $f: G \longrightarrow G'$ be a homomorphism of abelian groups s.t. $\ker(f) = 0$. Assume there is an $x \in T_G$ s.t. t(f)(x) = 0. This implies that f(x) = 0 and hence x = 0. Hence $\ker(t(f)) = 0$.
- $\circ \ 0 \longrightarrow G \longrightarrow G'$ exact implies that $0 \longrightarrow T_G \longrightarrow T_{G'}$ is exact.

Part (iii):

Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}/2$ be given by f(1) = 1. This is easily seen to be a homomorphism of abelian groups. Also it is surjective. We have $t(\mathbb{Z}) = 0$ and $t(\mathbb{Z}/2) = \mathbb{Z}/2$, hence $t(f): 0 \longrightarrow \mathbb{Z}/2$ is the inclusion which is not surjective.