

Prof. Pavle Blagojević

Albert Haase

Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 3

Exercise 1: Short Exact Sequence Does Not Split

Given the abelian groups \mathbb{Z} , $\mathbb{Z} \oplus (\mathbb{Z}/2)^{\mathbb{N}}$ and $(\mathbb{Z}/2)^{\mathbb{N}}$ construct a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

with these groups such that $B \cong A \oplus C$ and it does not split.

Solution to Exercise 1:

Cosinder the sequence

$$0^{i} \xrightarrow{s} \mathbb{Z} \oplus (\mathbb{Z}/2)^{\mathbb{N}} \xrightarrow{j} (\mathbb{Z}/2)^{\mathbb{N}} \longrightarrow 0 \quad (*)$$

where i(z) := (2z, 0) and $\operatorname{im}(i) = 2\mathbb{Z} \oplus 0$.

We have $\ker(j) = 2\mathbb{Z} \oplus 0$ and $\operatorname{im}(j) = (\mathbb{Z}/2)^{\mathbb{N}}$.

Hence the sequence (*) is exact. Assume (*) splits. Then there is a homomorphism $s: \mathbb{Z} \oplus (\mathbb{Z}/2)^{\mathbb{N}} \longrightarrow \mathbb{Z}$ such that $s \circ i = id_{\mathbb{Z}}$. Then every element $a \in (\mathbb{Z}/2)^{\mathbb{N}}$ must be mapped to 0 by s, since s preserves the order of elements (and a has finite order). Then s is given by $m \in \mathbb{Z}$ such that s(z, a) = mz. Hence $s \circ i(z) = m2z \neq z$ leading to a contradiction.

*Exercise 2: Homology of the Suspension

Given a topological space X we define the suspension SX of X as

$$SX := X \times [0,1]/\sim$$

where \sim is the equivalence relation generated by: $(x,s) \sim (y,t)$ if and only if s=t=0 or s=t=1. Show that

$$\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(SX)$$
 for all n .

Solution to Exercise 2:

we will show that $\widetilde{H}_n(X) = \widetilde{H}_{n+1}(SX)$ by applying the Mayer-Vietoris sequence for reduced homology to the following sets:

$$U := X \times \left[\frac{1}{4}, 1\right] / \sim$$
$$V := X \times \left[0, \frac{3}{4}\right] / \sim$$

Note that $SX = \operatorname{int}(U) \cup \operatorname{int}(V)$. We will show that:

- (1) U and V can each be deformation retracted to a point.
- (2) $U \cap V$ can be deformation retracted to X.

Then the Mayer-Vietoris sequence in reduced homology is for $n \in \mathbb{N}_{\geq 0}$:

$$\longrightarrow 0 \oplus 0 \longrightarrow \widetilde{H}_{n+1}(SX) \longrightarrow \widetilde{H}_n(X) \longrightarrow 0 \oplus 0 \longrightarrow$$

This implies that $\widetilde{H}_{n+1}(SX) \cong \widetilde{H}_n(X)$ for all $n \in \mathbb{N}_{\geq 0}$.

We will prove (1) for V. The proof for U is analogous. Define a map:

$$F: X \times \left[0, \frac{3}{4}\right] \times \left[0, 1\right] \longrightarrow X \times \left[0, \frac{3}{4}\right] / \sim = V$$
$$(x, s, t) \longmapsto \left[\left(x, (1 - t)s\right)\right]$$

This is continuous since it is the composition of continuous maps.

Let $\pi: X \times \left[0, \frac{3}{4}\right] \times \left[0, 1\right] \longrightarrow V \times \left[0, 1\right]$ be the quotient map. Then the map

$$\widetilde{F}: V \times [0,1] \longrightarrow V$$

$$([(x,s)],t) \longmapsto [(x,(1-t)s)]$$

is well defined an continuous because $\widetilde{F} \circ \pi = F$ and F is continuous. (Notice that \widetilde{F} is not well defined if we take $V = X \times [0,1]/\sim$.)

Now we check that \widetilde{F} is a deformation retraction to the point [(x,0)]:

- (a) F([(x,s)],0) = [(x,s)] for all $[(x,s)] \in V$.
- (b) F([(x,s)],1) = [(x,0)] for all $[(x,s)] \in V$
- (c) F([(x,0)],1) = [(x,0)] for all $x \in X$.

To prove (2) note that $U \cap V \cong X \times [\frac{1}{4}, \frac{3}{4}]$. Define

$$G: X \times \left[\frac{1}{4}, \frac{3}{4}\right] \times \left[0, 1\right] \longrightarrow X \times \left[\frac{1}{4}, \frac{3}{4}\right]$$
$$(x, s, t) \longmapsto (x, (1 - t)(s - \frac{1}{4}) + \frac{1}{4}).$$

Then G is continuous and a deformation retraction to $X \times \{\frac{1}{4}\} \cong X$.

*Exercise 3: Homology of Complements

- (a) Suppose U and V are open sets in \mathbb{R}^d and $H_n(U \cup V) = 0$ for all $n \geq 1$. Show that $H_n(U \cap V) \cong H_n(U) \oplus H_n(V)$ for all $n \geq 1$.
- (b) Suppose A and B are disjoint closed sets in \mathbb{R}^d . Show that

$$H_n(\mathbb{R}^d \setminus (A \cup B)) \cong H_n(\mathbb{R}^d \setminus A) \oplus H_n(\mathbb{R}^d \setminus B)$$
 for all $n \ge 1$.

What can be said for H_0 ?

(c) Let U be an open subset of \mathbb{R}^n and let $K \subset U$ be compact. Show that

$$H_n(U \setminus K) = H_n(U) \oplus H_n(\mathbb{R}^2 \setminus K)$$
 for all $n \ge 1$.

Solution to Exercise 3:

These exercises are applications of the Mayer-Vietoris sequence. Let us recall the statement:

Let X be topological space and $U, V \subseteq X$ subspaces such that $\operatorname{int}(U) \cup \operatorname{int}(V) = X$. Then the following sequence of (reduced) homology groups is exact:

...
$$\longrightarrow H_{n+1}(X) \xrightarrow{\partial_*} H_n(U \cap V) \xrightarrow{(i_*,j_*)} H_n(U) \oplus H_n(V) \xrightarrow{u_*-l_*} H_n(X) \longrightarrow ...$$

- (a) Set $X := U \cup V$ and plug $H_n(X) = 0$ into the sequence.
- (b) Set $X = \mathbb{R}^d$ and $U := \mathbb{R}^d \setminus A$ and $V := \mathbb{R}^d \setminus B$. Then $\operatorname{int}(U) = U$ and $\operatorname{int}(V) = V$ and $U \cup V = \mathbb{R}^d \setminus (A \cap B) = \mathbb{R}^d$. Then $H_n(X) = 0$ for all $n \geq 1$. Plug this into the sequence to get the desired isomorphism.

For H_0 the analogous statement is not true. For a counterexample take $A, B \subseteq \mathbb{R}^2$ to be two distinct points. Then $H_0(\mathbb{R}^2 \setminus (A \cup B)) \cong \mathbb{Z}$ and $H_0(\mathbb{R}^2 \setminus A) \oplus H_0(\mathbb{R}^2 \setminus B) \cong \mathbb{Z} \oplus \mathbb{Z}$.

(c) Set $V := \mathbb{R}^2 \setminus K$. Then V is open because K is closed as a compact set. Hence $\mathbb{R}^2 = U \cup V = \operatorname{int}(U) \cup \operatorname{int}(V)$. As in (b) $H_n(\mathbb{R}^2) = 0$ for all $n \geq 1$. If we plug this into the sequence we get the desired result.

*Exercise 4: Homology of the Wedge of two Spaces

Given topological spaces X and Y and "base points" $x_0 \in X$ and $y_0 \in Y$, the wedge of X and Y is definded as

$$X\vee Y:=X\sqcup Y/\sim$$

where \sim is the equivalence relation generated by $x_0 \sim y_0$. Assume that x_0 is a deformation retract of an open set $U \subseteq X$ and y_0 is a deformation retract of an open set $V \subseteq Y$. Show that

$$\widetilde{H}_n(X \vee Y) \cong \widetilde{H}_n(X) \oplus \widetilde{H}_n(Y)$$
 for all n .

Solutions to Exercise 4:

We will proceed similarly as in Exercise 2. We will define sets \widetilde{U} and \widetilde{V} such that

- (1) $\operatorname{int}(\widetilde{U}) \cup \operatorname{int}(\widetilde{V})$ deformation retracts to $X \vee Y$.
- (2) \widetilde{U} and \widetilde{V} deformation retract to homeomorphic copies of X respectively Y.
- (3) $\widetilde{U} \cap \widetilde{V}$ deformation retracts to a point.

Then the Mayer-Vietoris sequence will give the desired isomorphism

$$\widetilde{H}_n(X) \oplus \widetilde{H}_n(Y) \cong \widetilde{H}_n(X \vee Y)$$
 for all $n \in \mathbb{N}_{\geq 0}$.

Define
$$\widetilde{U} := U \times Y / \sim$$
 and $\widetilde{V} := X \times V / \sim$.

To show (2), let $F_1: U \times [0,1] \longrightarrow U$ be the deformation retraction to x_0 and $F_2: V \times [0,1] \longrightarrow V$ be the deformation retraction to y_0 then define:

$$\widetilde{F_1}: U \times Y \times [0,1] \longrightarrow U \times Y$$
$$(u,y,t) \longmapsto (F_1(u,t),y)$$
$$\widetilde{F_2}: X \times V \times [0,1] \longrightarrow X \times V$$
$$(x,v,t) \longmapsto (x,F_2(v,t)).$$

If we now pass to the maps on the quotients, we get deformation retractions that send \widetilde{U} to $\{x_0\} \times Y \approx Y$ and \widetilde{V} to $X \times \{y_0\} \approx X$. (1) and (3) are shown in a similar way as (2).