

Prof. Pavle Blagojević

Albert Haase

Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 5

Date of assignment: **Thursday**, **Nov. 27**, **2014**. We highly recommend problems marked with a star.

*Exercise 1: Relative Homology

Let (X, A) be a pair of spaces, that is, X is a topological space and $A \subseteq X$.

- (a) Show that the inclusion $A \hookrightarrow X$ induces induces isomorphisms on homology groups if and only if $H_n(X, A) = 0$ for all n.
- (b) Calculate the homology of an n-sphere by choosing X as the simplicial complex of all faces of an (n+1)-simplex and A as the subcomplex of all proper faces, that is, all faces $F \in X$ such that F is not the (n+1)-simplex.
- (c) Show that $H_0(X, A) = 0$ if and only if A intersects every path-component of X.
- (d) Show that $H_1(X, A) = 0$ if and only if $H_1(A) \longrightarrow H_1(X)$ is surjective and each path component of X contains at most one path component of A.
- (e) Let $X = S^2$ and A be a finite set of points in X. Calculate $H_*(X, A)$.
- (f) Let $X = \mathbb{R}$ and $A = \mathbb{Q} \subset \mathbb{R}$ be the set of rational numbers. Show that $H_1(\mathbb{R}, \mathbb{Q})$ is free abelian.

*Exercise 2: Maps and Homotopy Equivalences of Pairs of Spaces

Given pairs of spaces (X,A) and (Y,B) a map of pairs (of spaces) $f:(X,A) \longrightarrow (Y,B)$ is a continuous map $f:X \longrightarrow Y$ such that $f(A) \subseteq B$. The identity $\mathrm{id}_{(X,A)}\colon (X,A) \longrightarrow (X,A)$ is the identity id_X . A homotopy equivalence of two maps of pairs $f,f'\colon (X,A) \longrightarrow (Y,B)$, denoted by $f\simeq f'$, is given by a continuous map $F\colon X\times [0,1] \longrightarrow Y$ such that $F(a,t)\in B$ for all $a\in A$ and all $t\in [0,1]$ and F(x,0)=f(x) and F(x,1)=f'(x) for all $x\in X$. A map $f\colon (X,A) \longrightarrow (Y,B)$ of pairs of spaces is called homotopy equivalence (of pairs) if there exists a map of pairs $g\colon (Y,B) \longrightarrow (X,A)$ such that $f\circ g\simeq \mathrm{id}_{(Y,B)}$ and $g\circ f\simeq \mathrm{id}_{(X,A)}$. If $A=B=\emptyset$ then we are in the case of continuous maps $X\longrightarrow Y$ and we drop the "of pairs" in our definitions.

- Let $f, f': (X, A) \longrightarrow (Y, B)$ be maps of pairs.
- (a) Let $F: f \simeq f'$ be a homotopy of pairs. Show that F induces a homotopy between $f_{|A}$ and $f'_{|A}$.
- (b) Assume now that $f: X \longrightarrow Y$ and $g: A \longrightarrow B$, g(x) = f(x) are both homotopy equivalences. Show that $f_*: H_n(X, A) \longrightarrow H_n(Y, B)$ is an isomorphism for all $n \ge 0$.
- (c) Let f be the "inclusion" $(D^n, S^{n-1}) \hookrightarrow (D^n, D^n \setminus \{0\})$, where D^n denotes the n-dimensional disc and S^{n-1} denotes its boundary. Show that f is not a homotopy equivalence of pairs. Hence the hypotheses of (b) do not imply that f is a homotopy equivalence of pairs.

Exercise 3: Quotients

- (a) The real projective plane $\mathbb{R}P^2$ can be constructed as a quotient of the 2-disc by dividing the boundary circle of the 2-disc into two semicircles and identifying them with opposite orientations. Show that removing a closed disc from $\mathbb{R}P^2$ yields a Möbius strip. Construct $\mathbb{R}P^2$ from the unit square by identifying edges.
- (b) Given a solid oriented triangle $\Delta = [v_0, v_1, v_2]$ in \mathbb{R}^2 , form a quotient of Δ by identifying the two edges $[v_0, v_1]$ and $[v_1, v_2]$. What is the resulting topological space (up to homeomorphism)?
- (c) Let $\Delta = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0, y \geq 0, x+y \leq 1\}$ and let \sim be the equivalence relation generated by $(x,0) \sim (0,x)$ and $(x,0) \sim (x,1-x)$. Show that D is *contractible*, that is, homotopy equivalent to a point. Construct a triangulation of D.