

Prof. Pavle Blagojević

Albert Haase

Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 6

Date of assignment: Monday, Dec. 22, 2014. We highly recommend problems marked with a star.

*Exercise 1: Definition of Degree

Recall the definition of *degree* of a continuous map $f: S^n \longrightarrow S^n$ for $n \in \mathbb{Z}_{\geq 0}$ as the unique integer $\deg(f) \in \mathbb{Z}$ such that $f_*(x) = \deg(f)x$ for all $x \in H_n(S^n)$. In this exercise we complete the proof of a proposition from the tutorial. Prove the statements in red:

- (a) If $f = id_{S^n}$ then, deg(f) = 1.
- (b) If f is not surjective, then deg(f) = 0.
- (c) Homotopic maps have the same degree.
- (d) If $g: S^n \longrightarrow S^n$ is another continuous map, then $\deg(f \circ g) = \deg(f) \deg(g)$. In particular homotopy equivalences have degree -1 or +1.
- (e) A reflection in a (linear) coordinate hyperplane has degree -1.
- (f) The antipodal map $a: S^n \longrightarrow S^n$ given by a(x) = -x has degree $(-1)^{n+1}$.
- (g) If f has no fixed points, then it has degree $(-1)^{n+1}$.

*Exercise 2: Degrees and free $\mathbb{Z}/2$ -Actions

A group action of a group G on a topological space X is a group homomorphism $G \longrightarrow \operatorname{Homeo}(X)$, where the codomain is the set of all homeomorphisms on X. By abuse of notation, we often denote the image of $g \in G$ under this homomorphism by g as well. A space with a G-action is called a G-space. A group action is called free if for every $g \in G$, $g \neq e$ the homeomorphism $g \colon X \longrightarrow X$ has no fixed points. A map $f \colon X \longrightarrow Y$ for two G-spaces X, Y is called G-equivariant if f(gx) = gf(x) for all $g \in G$ and all $x \in X$. Given an n-sphere S^n , we call the action of $\mathbb{Z}/2 = \{-1, 1\}$ on S^n given by 1x = x and -1x = -x for all $x \in S^n$ the antipodal action.

- (a) Prove or disprove: The antipodal action is free.
- (b) Show that $\mathbb{Z}/2$ is the only nontrivial group that can act freely on S^n for even n. What does this imply for a rotation of the 2-sphere (well known result)?
- (c) Assume the following non-trivial theorem: Any continuous map $f: S^n \longrightarrow S^n$ that is equivariant with respect to the antipodal action has odd degree. Prove that there does *not* exist a continuous map $f: S^{n+1} \longrightarrow S^n$ that is equivariant with respect to the antipodal action.
- (d) Show that the second statement in (b) is equivalent to the following statement: For any continuous map $f \colon S^{n+1} \longrightarrow \mathbb{R}^n$ there exists a point $x \in S^{n+1}$ such that f(x) = f(-x).
- (e) Deduce the Brouwer fixed point theorem from (c) or (d).

Merry Christmas!