

Prof. Pavle Blagojević

Albert Haase

Prof. Holger Reich

Arbeitsgruppe Diskrete Geometrie

Arbeitsgruppe Algebraische Topologie

Topologie II – Exercise Sheet 7

Date of assignment: Monday, Jan. 26, 2015. We highly recommend problems marked with a star.

Exercise 1: Homology of a non-orientable surface of genus q

A non-orientable surface of genus g, called M'_g , is a closed, connected, non-orientable 2-dimensional, smooth real manifold that is obtained by gluing $g \geq 1$ cross-caps to a 2-sphere S^2 . The gluing of 1 cross-cap is the following contruction: Take S^2 and cut out an open 2-disk. Then identify opposite points on the boundary.

Compute the singular homology of M'_g by using a CW model for M'_g similar to the one in the tutorial.

*Exercise 2: Prescribing homology groups, coefficients

- (a) Construct a topological space X such that $H_n(X) = \mathbb{Z}/m\mathbb{Z}$ and $\widetilde{H}_i(X) = 0$ for all $i \neq n$.
- (b) Given an abelian group G and a map of spheres $f: S^n \longrightarrow S^n$ of degree m. First argue that $\widetilde{H}_k(S^n; G)$ is zero for $k \neq n$ and $H_n(S^n; G) \cong G$. Then show that the induced map $f_*: H_n(S^n; G) \longrightarrow H_n(S^n; G)$ is given by multiplication by m. This allows us to define the notion of degree independently of coefficients.
- (c) Construct topological spaces X and Y and a continuous map $f: X \longrightarrow Y$ such that f_* is trivial on homology with coefficients in \mathbb{Z} while f_* is not trivial on homology with coefficients in $\mathbb{Z}/m\mathbb{Z}$. Hint: The cellular boundary formula from the tutorial holds for aribtrary coefficients by (b).

¹See "Conway's ZIP proof" if you're curious about the classification of surfaces.

*Exercise 3: Tensor product, Tor functor, coefficients

- (a) Given integers m, n let (m, n) denote the greatest common divisor of m and n. Let $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$, likewise \mathbb{Z}_n . Show that $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \cong \mathbb{Z}_{(m,n)}$.
- (b) Given abelian groups G and H, show that $\operatorname{Tor}_1^{\mathbb{Z}}(H,G) = 0$ if H or G is torsion-free. *Hint:* You may use that $\otimes_{\mathbb{Z}} G$ is an exact functor if G is torsionfree.
- (c) Let G be an abelian group. Show that $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}_{m},G) \cong \ker(G \stackrel{m}{\to} G)$.
- (d) Show that given finitely generated abelian groups A and B the group $\operatorname{Tor}_1^{\mathbb{Z}}(A, B)$ is isomorphic to the tensor product of finite cyclic groups. *Hint:* First compute $\operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_m, \mathbb{Z}_n)$. You may use that $\mathbb{Z}/n\mathbb{Z} \cong m\mathbb{Z}/nm\mathbb{Z}$ (follows from an isomorphism theorem).
- (e) Let K be a finite CW complex (or finite simplicial complex). Show that for every n, the n-th singular homology group is uniquely determined (up to isomorphism) by the i-th homology groups with coefficients in the elementary primary groups, that is, by the groups $H_i(K; \mathbb{Z}_q)$ for all $i \in [0, n]$ and all $q = p^k$ with p prime and $k \geq 0$.