

Prof. Günter M. Ziegler Albert Haase Institut für Mathematik Arbeitsgruppe Diskrete Geometrie

Geometrie – Übungsblatt 6

Bitte geben Sie die Aufgaben vor der Übung am Dienstag, den 16. Juni 2015 ab.

Aufgabe 1: Bisektoren

(6 Punkte)

Seien A und B Punkte in der Ebene, die auf unterschiedlichen Seiten einer Geraden ℓ gelegen sind, sodass $\operatorname{dist}(A, \ell) > \operatorname{dist}(B, \ell)$.

- (a) Zeigen Sie, dass es genau einen Punkt $P \in \ell$ mit der Eigenschaft gibt, dass die Gerade ℓ Bisektor des Winkels $\angle (APB)$ ist.
- (b) Beweisen Sie, dass der Punkt P aus Teil (a) die Differenz der Abstände von A und B zu Punkten auf ℓ maximiert:

$$AP - PB = \max\{AX - XB \colon X \in \ell\}.$$

Aufgabe 2: Parabolspiegel

(5 Punkte)

Es sei C eine Parabel in der Ebene und ℓ ihre Direktrix. Für einen Punkt $X \in C$ sei t die Tangente an C im Punkt X. Es bezeichne P den Lotfußpunkt von X auf ℓ . Zeigen Sie, dass die Tangente t ein Bisektor des Winkels $\angle(FXP)$ ist. Erklären Sie, warum diese Eigenschaft für einen Parabolspiegel von Bedeutung ist.

Aufgabe 3: Quadriken 1

(6 Punkte)

(a) Beschreiben Sie alle möglichen Quadriken $Q \subset \mathbb{R}^3$, deren Gleichung die folgende Form hat:

$$\frac{x_1^2}{a_1^2} + \dots + \frac{x_k^2}{a_k^2} - \frac{x_{k+1}^2}{a_{k+1}^2} - \dots - \frac{x_{k+\ell}^2}{a_{k+\ell}^2} = 1 \quad \text{ für } 1 \le k, \ 0 \le \ell, \ \text{und } k + \ell \le 3,$$

wobei
$$a_1 \ge \dots \ge a_k > 0 < a_{k+1} \le \dots \le a_{k+\ell}$$
.

(b) Das (inzwischen ausgetauschte) Banner der Webseite mathematik.de zeigt eine Formel und eine Form (Siehe Abbildung 1). Welche Form beschreibt die Formel? Welche Formel beschribt die Form?

Aufgabe 4: Quadriken 2

(3 (+3) Punkte)

- (a) Wie lautet die Anzahl der Freiheitsgrade, die zur Verfügung stehen, um eine Quadrik im \mathbb{R}^2 zu definieren? Beweise.
- (b)* Wie lautet die Anzhal der Freiheitsgrade, die zur Verfügung stehen, um eine Quadrik im \mathbb{R}^n zu definieren? Beweise.

Abbildung 1: Banner der Website mathematik.de