8. Übungsblatt Geometrie

Abgabe bis spätestens **Montag**, den 17.6.2013, vor der Vorlesung. Bitte vermerken, in welcher Veranstaltung ihr das korrigierte Blatt erhalten möchtet.

Aufgabe 1: Bonusaufgabe: Satz von Pappus – duale Version ((3 + 3) Punkte)

- a) In der Vorlesung haben wir den Begriff der Dualität kennen gelernt. Formuliere eine duale Version des Satzes von Pappus (Theorem 5.27 des Skripts). Beachte, dass der Satz für Punkte im $\mathbb{R}P^2$ gilt.
- b) Beweise die duale Version des Satzes von Pappus. *Tipp:* Verwende den Satz zur Dualität aus der Vorlesung (Theorem 5.26 des Skripts).

Aufgabe 2: Beispiel einer endlichen Geometrie (3 + 3 + 4 + 4) Punkte)

Gegeben sei der endliche Körper \mathbb{F}_5 mit 5 Elementen. Wir definieren die *affine Ebene über* \mathbb{F}_5 als karthesisches Produkt $\mathbb{F}_5^2 = \mathbb{F}_5 \times \mathbb{F}_5$. Beachte, dass \mathbb{F}_5^2 ein Vektorraum über \mathbb{F}_5 ist. \mathbb{F}_5

Für einen Punkt $P \in \mathbb{F}_5^2$ mit $P \neq 0$ und einen Punkt $S \in \mathbb{F}_5^2$ definieren wir eine Gerade als Menge

$$\{S + tP \mid t \in \mathbb{F}_5\}$$
.

- a) Gib alle Geraden in \mathbb{F}_5^2 an, die durch den Nullpunkt gehen und zeichne sie in ein geeignetes Koordinatensystem ein.
- b) Wieviele verschiedene Geraden gibt es in \mathbb{F}_5^2 ?
- c) Gib eine geeignete Gruppe G inklusive Gruppenwirkung auf \mathbb{F}_5^2 an, sodass (\mathbb{F}_5^2, G) zu einer Geometrie im Sinne von Felix Klein wird (siehe Definition 6.3 des Skripts). Wir nennen (\mathbb{F}_5^2, G) eine endliche Geometrie.
- d) Zu jedem Element $g \in G$ gehört eine Bijektion $\phi_G \colon \mathbb{F}_5^2 \to \mathbb{F}_5^2$, genannt Transformation. Oft unterscheiden wir im Sprachgebrauch nicht zwischen g und ϕ_g . Frage: Bilden die Transformationen aus G Geraden auf Geraden ab, sind Geraden also Invarianten unter der Transformationsgruppe G der Geometrie (\mathbb{F}_5^2, G) ?

Aufgabe 3: Projektive Geometrie – axiomatisch (3 + 3 Punkte)

In der Vorlesung wurden drei Axiome für eine sogenannte projektive Geometrie aufgestellt (Definition 6.1 des Skripts). Sie gehen auf Veblen und Young (1905) zurück.

- a) Zeige, dass der $\mathbb{R}P^2$ die genannten Axiome erfüllt.
- b) Finde ein Beispiel einer Geometrie, die keine projektive Geometrie im Sinne der Axiome ist.

 $^{^1}$ Aus der linearen Algebra ist bekannt, dass das karthesische Produkt eines Körpers k mit sich selbst einen Vektorraum über k bildet.