11. Übungsblatt

Abgabe: 25. Januar 2016

Aufgabe 11.1: 5 Punkte

- 1. Sei G die Drehung um $\pi/2$ um den Punkt $(1,1) \in \mathbb{R}^2$ (gegen den Uhrzeigersinn). Beschreiben Sie G als Affinität und geben Sie die dazugehörige erweiterte Matrix an.
- 2. Sei g(x)=b+Ax eine affin lineare Abbildung $\mathbb{R}^2\to\mathbb{R}^2$. Zeigen Sie: Ist $A\neq \mathrm{Id}$, dann hat g einen Fixpunkt. (Ein Fixpunkt ist ein $x\in\mathbb{R}^2$ mit g(x)=x.)

Aufgabe 11.2: 5 Punkte

Sei f(x) = b + Ax eine lineare Abbildung $K^n \to K^n$. Sei $B = \begin{pmatrix} 1 & 0 \\ b & A \end{pmatrix}$ die dazugehörige erweiterte Matrix.

- 1. Zeigen Sie: f ist genau dann eine Affinität, wenn $A \in GL(n; K)$.
- 2. Sei $A = \begin{pmatrix} -3 & -1 \\ 4 & 1 \end{pmatrix}$, sei $b = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$. Dann ist f eine Affinität. Berechnen Sie die inverse Affinität von f, also die eindeutige Abbildung f^{-1} mit $f^{-1}(f(x)) = x$ für alle $x \in K^n$.
- 3. Sei nun f eine Affinität. Sei f^{-1} die inverse Affinität. Zeigen Sie, dass B^{-1} die erweiterte Matrix von f^{-1} ist.

Aufgabe 11.3: 5 Punkte

Sei

$$A := \begin{pmatrix} 2 & -2 & -1 \\ -2 & -15 & -4 \\ -1 & -4 & -1 \end{pmatrix}.$$

Sei Q die Quadrik, die durch A gegeben ist. Zeigen Sie, dass Q eine Ellipse ist, indem Sie eine affine Transformation (Affinität) f finden, die Q auf den Einheitskreis $\{(x_1, x_2) \mid x_1^2 + x_2^2 - 1 = 0\}$ abbildet.

Aufgabe 11.4: 5 Punkte

Betrachten Sie die Quadrik Q, die durch die Matrix

$$A := \begin{pmatrix} 0 & -1 & 1 & 4 \\ -1 & -3 & -2 & -7 \\ 1 & -2 & 1 & 4 \\ 4 & -7 & 4 & 16 \end{pmatrix}$$

gegeben ist. Bringen Sie Q auf affine Normalform indem Sie eine Affinität $f: \mathbb{R}^3 \to \mathbb{R}^3$ finden, so dass die Matrix von f(Q) Diagonalform hat.

Hinweis: Benutzen Sie die Umformungen wie für Normalformen von symmetrischen Bilinearformen mit der Einschränkung, dass Sie nur Affinitäten benutzen können.