Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

```
Unter einem topologischen }\mp@subsup{}{}{1}\mathrm{ Raum verstehen wir eine
Menge E, worin den Elementen (Punkten) }x\mathrm{ gewisse Teilmengen }\mp@subsup{U}{x}{
zugeordnet sind, die wir Umgebungen von x nennen, und zwar nach
MaBgabe der folgenden
                                    Umgebungsaxiome:
    (A) Jedem Punkt x entspricht mindestens eine Umgebung }\mp@subsup{U}{x}{}\mathrm{ ;
jede Umgebung }\mp@subsup{U}{x}{}\mathrm{ enthält den Punkt }x\mathrm{ .
    (B) Sind }\mp@subsup{U}{x}{},\mp@subsup{V}{x}{}\mathrm{ zwei Umgebungen desselben Punktes }x\mathrm{ , so gibt
es eine Umgebung }\mp@subsup{W}{x}{}\mathrm{ , die Teilmenge von beiden ist ( }\mp@subsup{W}{x}{}\leqq\mathfrak{D}(\mp@subsup{U}{x}{},\mp@subsup{V}{x}{\prime})\mathrm{ ).
    (C) Liegt der Punkt }y\mathrm{ in }\mp@subsup{U}{x}{}\mathrm{ , so gibt es eine Umgebung }\mp@subsup{U}{y}{}\mathrm{ , die
Teilmenge von }\mp@subsup{U}{x}{}\mathrm{ ist ( }\mp@subsup{U}{y}{}\leqq\mp@subsup{U}{x}{})\mathrm{ .
    (D) Für zwei verschiedene Punkte }x,y\mathrm{ gibt es zwei Umgebungen
U
1 Der Ausdruck ist in einem verwandten Sinne bereits üblich; wir wollen
amit andeuten, daB es sich um Dinge handelt, die ohne MaB und Zahl aus
damit andeuten,
    Felix Hausdorff,
Grundzüge der Mengenlehre, 1914, p. }21
```

Exercise 1 (Kuratowski closure axioms)
We consider a set X together with a map

$$
\because: \mathcal{P}(X) \rightarrow \mathcal{P}(X), \quad A \mapsto \bar{A}
$$

such that for all $A, B \subset X$ we have

1. $\bar{\varnothing}=\varnothing$
2. $\overline{A \cup B}=\bar{A} \cup \bar{B}$
3. $A \subset \bar{A}$
4. $\overline{\bar{A}}=\bar{A}$.

Let $\mathcal{C} \subset \mathcal{P}$ be the collection of sets $C \subset X$, such that $\bar{C}=C$. Prove that (X, \mathcal{C}) is a topological space defined by a collection of closed sets \mathcal{C}.
Given a topological space defined by closed sets, how can one define a closure map that satisfies the axioms above?

Exercise 2 (New metrics from old ones)
Let (M, d) be a metric space. Let $d_{1}, d_{2}: X \times X \rightarrow \mathbb{R}$ be defined as

$$
d_{1}(x, y)=\min \{d(x, y), 1\} \quad \text { and } \quad d_{2}(x, y)=\frac{d(x, y)}{d(x, y)+1} .
$$

1. Show that d_{1} defines a metric on M.
2. Show that d_{2} defines a metric on M.
3. Show that d, d_{1} and d_{2} induce the same topology on M.

Exercise 3 (Infinite product of metric spaces)
Let $\left(M_{i}, d_{i}\right)_{i \in \mathbb{N}}$ be a family of metric spaces. Consider the space $M:=\prod_{i \in \mathbb{N}} M_{i}$ together with the metric

$$
d\left(\left(x_{0}, x_{1}, \ldots\right),\left(y_{0}, y_{1}, \ldots\right)\right):=\sum_{i \in \mathbb{N}} 2^{-i} \frac{d\left(x_{i}, y_{i}\right)}{d\left(x_{i}, y_{i}\right)+1}
$$

Show that (M, d) is indeed a metric space.

Exercise 4 (Finite topologies)

We consider topological spaces (X, \mathcal{O}), where X is a finite set and $\mathcal{O} \subset \mathcal{P}(X)$ is the set of open subsets of X. Let $X=\{0,1,2,3,4\}$ be a set with 5 elements. Provide at least 6 different collections of open sets \mathcal{O}, such that (X, \mathcal{O}) is a topological space.

Exercise 5 (Fürstenbergs proof)

Consider the integers \mathbb{Z}. For $a, b \in \mathbb{Z}$ we define a subset $S(a, b) \subset \mathbb{Z}$ as

$$
S(a, b):=a \mathbb{Z}+b=\{a z+b \mid z \in \mathbb{Z}\}
$$

We call a subset $A \subset \mathbb{Z}$ open if it is either empty or a union of sets of the form $S(a, b)$ with $a \neq 0$. Show that

1. The collection of open sets defines a topology on \mathbb{Z}.
2. A nonempty finite subset of \mathbb{Z} cannot be open.
3. The set $\mathbb{Z} \backslash\{-1,1\}$ cannot be closed.
4. The sets $S(a, b)$ are closed sets, i.e. can be written as complements of open sets.
5. When taking the union over all prime numbers p, we have $\bigcup_{p} S(p, 0)=\mathbb{Z} \backslash\{-1,1\}$.
6. Use 5 . to show that there are infinitely many primes.

Felix Hausdorff at his desk, June 8.-14, 1924

