Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Sheet 10

due Wednesday, January 17th, 2018

Exercise 37 (Compact Hausdorff implies normal)

Let X be a compact Hausdorff space. Prove that X is normal.

Exercise 38 (Hawaiian earring)

Consider $X \subset \mathbb{R}^2$ given by the union of all circles with center $(\frac{1}{n}, 0)$ and radius $\frac{1}{n}$ for n = 1, 2, ...Show that X is not an Euclidean neighborhood retract.

Show that X is not an Euclidean neighborhood retract regardless of the inclusion into \mathbb{R}^d

(The last part might be a bit more difficult. Knowledge about retracts and fundamental groups can be useful. $\pi_1(S^1) \neq 0$ may be assumed.)

Exercise 39 (Homotopy of pairs)

Give an example of two continuous maps of pairs $f, g: (X, A) \to (Y, B)$ such that the induced maps $f_X, g_X: X \to Y$ are homotopic and the induced maps $f_A, g_A: A \to B$ are homotopic, but f and g are **not** homotopic as maps of pairs.

Exercise 40 (Compactly generated topology)

Given a topological space X. Denote by kX the set X with the finest topology such that for all compact Hausdorff spaces K and continuous maps $f: K \to X$ the induced set map $f_*: K \to kX$ is continuous as well.

A space X is called *compactly generated* when kX = X.

- 1. Prove that the topology on kX is given by: $A \subset kX$ is closed if $f_*^{-1}(A)$ is closed for every K compact Hausdorff and every $f: K \to X$ continuous.
- 2. Give an example of a compactly generated space that is not Hausdorff.
- 3. Show that every quotient of a compact Hausdorff space is compactly generated.
- 4. Show that every quotient of a compactly generated space is again compactly generated.
- 5. Let $X = \mathbb{R}$ with the cocountable topology. Show that X not compactly generated. The cocountable topology is given by: $A \subset \mathbb{R}$ is closed if A is countable or $A = \mathbb{R}$. (Hint: What are compact subsets of X.) What is kX?