# Exercise Sheet for Topology I, 2017/18 

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem



The universal property of the quotient:
Suppose $f$ is continuous. Then $\tilde{f}$ is continuous if it is well-defined (such that the diagram commutes).


The universal property of a subspace: Let $A \subset Y$ be a subspace with inclusion map inc: $A \rightarrow Y$. Then $f$ is continuous if and only if inc $\circ f$ is continuous.

Exercise 41 (Deriving (Sub-)basisis from old ones)
Motivation Let $X, Y$ be topological spaces and $f: X \rightarrow Y$ be some set map. If $\mathcal{S}$ is a subbasis of $Y$, then $f$ is continuous if and only if $f^{-1}(U)$ is open in $X$ for all $U \in \mathcal{S}$.
(Slogan: For continuity it is sufficient to check a subbasis.)
Let $\mathcal{B}$ be a basis of $X$ and $S \subset X . S$ is open if and only if for every $x \in S$ there exists some $U \in \mathcal{B}$ such that $x \in U \subset S$.

Overall, to prove continuity of $f: X \rightarrow Y$ it is usefull to have a subbasis of $Y$. To disprove continuity it is usefull to have a basis of $X$.

1. Product. Let $X_{1}, X_{2}$ be topological spaces with basis $\mathcal{B}_{1}, \mathcal{B}_{2}$. Prove that $\mathcal{B}_{1} \times \mathcal{B}_{2}$ is a basis of $X_{1} \times X_{2}$, where

$$
\mathcal{B}_{1} \times \mathcal{B}_{2}:=\left\{U_{1} \times U_{2} \mid U_{1} \in \mathcal{B}_{1}, U_{2} \in \mathcal{B}_{2}\right\} .
$$

Let $\left(X_{i}\right)_{i \in I}$ be a family of topological spaces with $\left(\mathcal{B}_{i}\right)_{i \in I}$ be a family of corresponding basisis. Prove that $\prod_{i \in I} \mathcal{B}_{i}$ is a basis of $\prod_{i \in I} X_{i}$, where

$$
\prod_{i \in I} \mathcal{B}_{i}:=\left\{\prod_{i \in I} U_{i} \mid \forall i \in I: U_{i} \in \mathcal{B}_{i}, \text { all but finitely many } U_{i} \text { are equal to } X_{i}\right\} .
$$

2. Coproduct. Let $X_{1}, X_{2}$ be topological spaces with subbasis $\mathcal{S}_{1}, \mathcal{S}_{2}$. Prove that $\mathcal{S}_{1} \sqcup \mathcal{S}_{2}$ is a subbasis of $X_{1} \sqcup X_{2}$, where

$$
\mathcal{S}_{1} \sqcup \mathcal{S}_{2}:=\left\{U \mid U \in \mathcal{S}_{1} \sqcup \mathcal{S}_{2} .\right\}
$$

Given a family of topological spaces $\left(X_{i}\right)_{i \in I}$ with subbasisis $\left(\mathcal{S}_{i}\right)_{i \in I}$. Construct a subbasis for $\bigsqcup_{i \in I} X_{i}$ from $\left(\mathcal{S}_{i}\right)_{i \in I}$.
3. Subspace. Let $X$ be a topological space with basis $\mathcal{B}$ and let $A \subset X$ with the subspace topology. Construct a basis for $A$ from $\mathcal{B}$.
4. Quotient space. Let $X$ be topological space with subbasis $\mathcal{S}$ and let $X / \sim$ be the quotient obtained by some relation. Construct a subbasis for $X / \sim$ from $\mathcal{S}$.

Remark We have only asked for a basis or a subbasis for each construction. This is why:

1. To check wether a map $X \rightarrow Y_{1} \times Y_{2}$ is continuous, one needs not to know a subbasis of $Y_{1} \times Y_{2}$ but can instead check the map on each factor.
2. To check wether a map $X_{1} \sqcup X_{2} \rightarrow Y$ is continuous one can check each component.
3. To check wether a map $X \rightarrow A \subset Y$ is continuous one can check the induced map $X \rightarrow Y$.
4. To check wether a map $X / \sim \rightarrow Y$ is continuous one can check instead the induced map $X \rightarrow Y$.

However, if we have some construction $\left(X_{1} \times X_{2}\right) / \sim$ then we might care about a subbasis for $X_{1} \times X_{2}$ from a subbasis from $X_{1}$ and $X_{2}$ (which is possible by the same construction).

Exercise 42 ( $S^{\infty}$ is contractible) Consider the space

$$
S^{\infty}:=\left\{\left(x_{0}, x_{1}, \ldots\right) \mid \sum_{i=0}^{\infty} x_{i}^{2}=1, \text { all but finitely many } x_{i} \text { are zero }\right\}
$$

This turns out to be a metric space by

$$
d_{2}\left(\left(x_{0}, \ldots\right),\left(y_{0}, \ldots\right)\right):=\sqrt{\sum_{i=0}^{\infty}\left(x_{0}-y_{0}\right)^{2}}
$$

In this exercise we will show that this space is contractible.
Consider $S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i}^{2}=1\right\}$ with the Euclidean metric

$$
d_{2}\left(\left(x_{0}, \ldots, x_{n}\right),\left(y_{0}, \ldots, y_{n}\right):=\sqrt{\sum_{i=0}^{n}\left(x_{i}-y_{i}\right)^{2}}\right.
$$

As we will see, this space is not contractible. However each inclusion $S^{n} \rightarrow S^{n+1}$ is homotopic to a constant map. We will take particular interest in the inclusions

$$
i_{n}: S^{n} \rightarrow S^{n+1}, \quad\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(x_{0}, \ldots, x_{n}, 0\right)
$$

and

$$
j_{n}: S^{n} \rightarrow S^{n+1}, \quad\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(0, x_{0}, \ldots, x_{n}\right)
$$

1. Show that $i_{n}$ is homotopic to $j_{n}$.
2. Show that $j_{n}$ is homotopic $\left(x_{0}, \ldots, x_{n}\right) \mapsto(1,0,0, \ldots, 0)$.
3. Show that $i_{\infty}=\mathrm{id}: S^{\infty} \rightarrow S^{\infty}$ is homotopic to

$$
j_{\infty}: S^{\infty} \rightarrow S^{\infty},\left(x_{0}, \ldots\right) \mapsto\left(0, x_{0}, \ldots\right)
$$

4. Show that $j_{\infty}$ is homotopic to a constant map.
5. Conclude that $S^{\infty}$ is contractible.

Exercise 43 (Homotopy of pairs vs. Homotopy of quotients) Suppose $f, g:(X, A) \rightarrow(Y, B)$ are continuous maps of pairs.

1. Prove that they induce continuous maps $\tilde{f}, \tilde{g}: X / A \rightarrow Y / B$.
2. Suppose $f$ and $g$ are homotopic as maps of pairs. Prove that $\tilde{f}$ and $\tilde{g}$ are homotopic relative $[A]$, the point corresponding to $A$.
3. Suppose $\tilde{f}$ and $\tilde{g}$ are homotopic relative $[A]$. Give an example that $f$ and $g$ need not to be homotopic as maps of pairs. (You need not to prove your counterexample.)
