Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Sheet 11

due Friday, January 26th, 2018

The universal property of a subspace: Let $A \subset Y$ be a subspace with inclusion map inc: $A \to Y$. Then f is continuous if and only if inc $\circ f$ is continuous.

Exercise 41 (Deriving (Sub-)basisis from old ones)

Motivation Let X, Y be topological spaces and $f: X \to Y$ be some set map. If S is a subbasis of Y, then f is continuous if and only if $f^{-1}(U)$ is open in X for all $U \in S$.

(Slogan: For continuity it is sufficient to check a subbasis.)

Let \mathcal{B} be a basis of X and $S \subset X$. S is open if and only if for every $x \in S$ there exists some $U \in \mathcal{B}$ such that $x \in U \subset S$.

Overall, to prove continuity of $f: X \to Y$ it is usefull to have a subbasis of Y. To disprove continuity it is usefull to have a basis of X.

1. Product. Let X_1, X_2 be topological spaces with basis $\mathcal{B}_1, \mathcal{B}_2$. Prove that $\mathcal{B}_1 \times \mathcal{B}_2$ is a basis of $X_1 \times X_2$, where

$$\mathcal{B}_1 \times \mathcal{B}_2 := \{ U_1 \times U_2 | U_1 \in \mathcal{B}_1, U_2 \in \mathcal{B}_2 \}.$$

Let $(X_i)_{i \in I}$ be a family of topological spaces with $(\mathcal{B}_i)_{i \in I}$ be a family of corresponding basis basis. Prove that $\prod_{i \in I} \mathcal{B}_i$ is a basis of $\prod_{i \in I} X_i$, where

 $\prod_{i \in I} \mathcal{B}_i := \{\prod_{i \in I} U_i | \forall i \in I \colon U_i \in \mathcal{B}_i, \text{ all but finitely many } U_i \text{ are equal to } X_i \}.$

2. Coproduct. Let X_1, X_2 be topological spaces with subbasis S_1, S_2 . Prove that $S_1 \sqcup S_2$ is a subbasis of $X_1 \sqcup X_2$, where

$$\mathcal{S}_1 \sqcup \mathcal{S}_2 := \{ U | U \in \mathcal{S}_1 \sqcup \mathcal{S}_2. \}$$

Given a family of topological spaces $(X_i)_{i \in I}$ with subbasis is $(S_i)_{i \in I}$. Construct a subbasis for $\bigsqcup_{i \in I} X_i$ from $(S_i)_{i \in I}$.

- 3. Subspace. Let X be a topological space with basis \mathcal{B} and let $A \subset X$ with the subspace topology. Construct a basis for A from \mathcal{B} .
- 4. Quotient space. Let X be topological space with subbasis S and let X/\sim be the quotient obtained by some relation. Construct a subbasis for X/\sim from S.

Remark We have only asked for a basis or a subbasis for each construction. This is why:

- 1. To check we ther a map $X \to Y_1 \times Y_2$ is continuous, one needs not to know a subbasis of $Y_1 \times Y_2$ but can instead check the map on each factor.
- 2. To check we ther a map $X_1 \sqcup X_2 \to Y$ is continuous one can check each component.
- 3. To check we ther a map $X \to A \subset Y$ is continuous one can check the induced map $X \to Y$.
- 4. To check we ther a map $X/\!\!\sim\to Y$ is continuous one can check instead the induced map $X\to Y.$

However, if we have some construction $(X_1 \times X_2)/\sim$ then we might care about a subbasis for $X_1 \times X_2$ from a subbasis from X_1 and X_2 (which is possible by the same construction).

Exercise 42 (S^{∞} is contractible) Consider the space

$$S^{\infty} := \Big\{ (x_0, x_1, \dots) \Big| \sum_{i=0}^{\infty} x_i^2 = 1, \text{all but finitely many } x_i \text{ are zero} \Big\}.$$

This turns out to be a metric space by

$$d_2((x_0,\ldots),(y_0,\ldots)) := \sqrt{\sum_{i=0}^{\infty} (x_0 - y_0)^2}.$$

In this exercise we will show that this space is contractible.

Consider $S^n = \{(x_0, \ldots, x_n) | \sum_{i=1}^n x_i^2 = 1\}$ with the Euclidean metric

$$d_2((x_0,\ldots,x_n),(y_0,\ldots,y_n)) := \sqrt{\sum_{i=0}^n (x_i - y_i)^2}.$$

As we will see, this space is not contractible. However each inclusion $S^n \to S^{n+1}$ is homotopic to a constant map. We will take particular interest in the inclusions

$$i_n \colon S^n \to S^{n+1}, \quad (x_0, \dots, x_n) \mapsto (x_0, \dots, x_n, 0)$$

and

$$j_n: S^n \to S^{n+1}, \quad (x_0, \dots, x_n) \mapsto (0, x_0, \dots, x_n).$$

- 1. Show that i_n is homotopic to j_n .
- 2. Show that j_n is homotopic $(x_0, \ldots, x_n) \mapsto (1, 0, 0, \ldots, 0)$.
- 3. Show that $i_{\infty} = \operatorname{id} \colon S^{\infty} \to S^{\infty}$ is homotopic to

$$j_{\infty}: S^{\infty} \to S^{\infty}, (x_0, \dots) \mapsto (0, x_0, \dots).$$

4. Show that j_{∞} is homotopic to a constant map.

- 5. Conclude that S^{∞} is contractible.
- **Exercise 43** (Homotopy of pairs vs. Homotopy of quotients) Suppose $f, g: (X, A) \to (Y, B)$ are continuous maps of pairs.
 - 1. Prove that they induce continuous maps $\tilde{f}, \tilde{g} \colon X/A \to Y/B$.
 - 2. Suppose f and g are homotopic as maps of pairs. Prove that \tilde{f} and \tilde{g} are homotopic relative [A], the point corresponding to A.
 - 3. Suppose \tilde{f} and \tilde{g} are homotopic relative [A]. Give an example that f and g need not to be homotopic as maps of pairs. (You need not to prove your counterexample.)