Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Exercise 6 (Norms on function spaces)
Consider the space $C([0,1])$ of continuous, real functions $[0,1] \rightarrow \mathbb{R}$. We can define the following metrics on $C([0,1])$:

$$
\begin{aligned}
d_{\infty}(f, g) & :=\sup _{x}|f(x)-g(x)| \\
d_{2}(f, g) & :=\sqrt{\int_{0}^{1}(f(x)-g(x))^{2} d x}
\end{aligned}
$$

Show that both d_{∞} and d_{2} are give a metric on $C([0,1])$. The evaluation map is defined as

$$
E: C([0,1]) \rightarrow \mathbb{R}, \quad f \mapsto f(0)
$$

Show that E is continuous when viewed as a map from the metric space $\left(C([0,1]), d_{\infty}\right)$, but not continuous when viewed as a map from the metric space $\left(C([0,1]), d_{2}\right)$. Hence the two metrics are not equivalent.

Exercise 7 (Distance from points and sets)
Let (M, d) be a metric space. Show that
(a) For all $a \in M$, the function $f: M \rightarrow \mathbb{R}, x \mapsto d(x, a)$ is continuous.
(b) For all non-empty subsets $A \subset M$, the function $g: M \rightarrow \mathbb{R}, x \mapsto \inf \{d(x, a) \mid a \in A\}$, is continuous and $g^{-1}(\{0\})=\bar{A}$.
(c) For every non-empty, disjoint and closed subsets $A, B \subset M$, there is a continuous function $h: M \rightarrow \mathbb{R}$, such that $h^{-1}(\{0\})=A$ and $h^{-1}(\{1\})=B$.

Exercise 8 (Induced metric and induced topology)
Let X be some space and let (Y, d) be some metric space with topology induced by that metric. Given a map $f: X \rightarrow Y$.

- There is an induced metric on X given by $d_{f}(x, y):=d(f(x), f(y))$. Show that this is a metric.
- There is also an induced topology on X given by the preimages of open sets:

$$
\left\{f^{-1}(U), U \subset Y \text { open }\right\}
$$

Show that this is a topology. (It is the coarsest topology on X such that the map is continuous.)

- Show that the topology induced by d_{f} is the topology induced by f as in (ii).

Exercise 9 (Alternatives to continuity)

Let $f: X \rightarrow Y$ be a map between two topological spaces. Then the following are equivalent:
(a) f is continuous;
(b) For all $B \subset Y$, we have $f^{-1}\left(B^{\circ}\right) \subset f^{-1}(B)^{\circ}$;
(c) For all $C \subset Y$, we have $\overline{f^{-1}(C)} \subset f^{-1}(\bar{C})$.

For the map $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{-x^{2}}$, find two sets B and C such that the above inclusions are proper inclusions (and not equalities of sets).

